cudf.core.column.lists.ListMethods.concat#
- ListMethods.concat(dropna=True) Series | Index #
For a column with at least one level of nesting, concatenate the lists in each row.
- Parameters:
- dropna: bool, optional
If True (default), ignores top-level null elements in each row. If False, and top-level null elements are present, the resulting row in the output is null.
- Returns:
- Series or Index
Examples
>>> s1 0 [[1.0, 2.0], [3.0, 4.0, 5.0]] 1 [[6.0, None], [7.0], [8.0, 9.0]] dtype: list >>> s1.list.concat() 0 [1.0, 2.0, 3.0, 4.0, 5.0] 1 [6.0, None, 7.0, 8.0, 9.0] dtype: list
Null values at the top-level in each row are dropped by default:
>>> s2 0 [[1.0, 2.0], None, [3.0, 4.0, 5.0]] 1 [[6.0, None], [7.0], [8.0, 9.0]] dtype: list >>> s2.list.concat() 0 [1.0, 2.0, 3.0, 4.0, 5.0] 1 [6.0, None, 7.0, 8.0, 9.0] dtype: list
Use
dropna=False
to produce a null instead:>>> s2.list.concat(dropna=False) 0 None 1 [6.0, nan, 7.0, 8.0, 9.0] dtype: list