cudf.DataFrame.count#
- DataFrame.count(axis=0, numeric_only=False)[source]#
Count
non-NA
cells for each column or row.The values
None
,NaN
,NaT
are consideredNA
.- Returns:
- Series
For each column/row the number of non-NA/null entries.
Examples
>>> import cudf >>> import numpy as np >>> df = cudf.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df.count() Person 5 Age 4 Single 5 dtype: int64
Pandas Compatibility Note
Parameters currently not supported are axis and numeric_only.