cudf.DataFrame.dropna#
- DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)[source]#
Drop rows (or columns) containing nulls from a Column.
- Parameters:
- axis{0, 1}, optional
Whether to drop rows (axis=0, default) or columns (axis=1) containing nulls.
- how{“any”, “all”}, optional
Specifies how to decide whether to drop a row (or column). any (default) drops rows (or columns) containing at least one null value. all drops only rows (or columns) containing all null values.
- thresh: int, optional
If specified, then drops every row (or column) containing less than thresh non-null values
- subsetlist, optional
List of columns to consider when dropping rows (all columns are considered by default). Alternatively, when dropping columns, subset is a list of rows to consider.
- inplacebool, default False
If True, do operation inplace and return None.
- Returns:
- Copy of the DataFrame with rows/columns containing nulls dropped.
See also
cudf.DataFrame.isna
Indicate null values.
cudf.DataFrame.notna
Indicate non-null values.
cudf.DataFrame.fillna
Replace null values.
cudf.Series.dropna
Drop null values.
cudf.Index.dropna
Drop null indices.
Examples
>>> import cudf >>> df = cudf.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": ['Batmobile', None, 'Bullwhip'], ... "born": [np.datetime64("1940-04-25"), ... np.datetime64("NaT"), ... np.datetime64("NaT")]}) >>> df name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 1 Batman <NA> <NA> 2 Catwoman Bullwhip <NA>
Drop the rows where at least one element is null.
>>> df.dropna() name toy born 0 Alfred Batmobile 1940-04-25
Drop the columns where at least one element is null.
>>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman
Drop the rows where all elements are null.
>>> df.dropna(how='all') name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 1 Batman <NA> <NA> 2 Catwoman Bullwhip <NA>
Keep only the rows with at least 2 non-null values.
>>> df.dropna(thresh=2) name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 2 Catwoman Bullwhip <NA>
Define in which columns to look for null values.
>>> df.dropna(subset=['name', 'born']) name toy born 0 Alfred Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True) >>> df name toy born 0 Alfred Batmobile 1940-04-25