cudf.DataFrame.memory_usage#
- DataFrame.memory_usage(index=True, deep=False)#
Return the memory usage of an object.
- Parameters:
- indexbool, default True
Specifies whether to include the memory usage of the index.
- deepbool, default False
The deep parameter is ignored and is only included for pandas compatibility.
- Returns:
- Series or scalar
For DataFrame, a Series whose index is the original column names and whose values is the memory usage of each column in bytes. For a Series the total memory usage.
Examples
DataFrame
>>> dtypes = ['int64', 'float64', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = cudf.DataFrame(data) >>> df.head() int64 float64 object bool 0 1 1.0 1.0 True 1 1 1.0 1.0 True 2 1 1.0 1.0 True 3 1 1.0 1.0 True 4 1 1.0 1.0 True >>> df.memory_usage(index=False) int64 40000 float64 40000 object 40000 bool 5000 dtype: int64
Use a Categorical for efficient storage of an object-dtype column with many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True) 5008
Series >>> s = cudf.Series(range(3), index=[‘a’,’b’,’c’]) >>> s.memory_usage() 43
Not including the index gives the size of the rest of the data, which is necessarily smaller:
>>> s.memory_usage(index=False) 24