cudf.DataFrame.quantile#
- DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=None, columns=None, exact=True, method='single')[source]#
Return values at the given quantile.
- Parameters:
- qfloat or array-like
0 <= q <= 1, the quantile(s) to compute
- axisint
axis is a NON-FUNCTIONAL parameter
- numeric_onlybool, default True
If False, the quantile of datetime and timedelta data will be computed as well.
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j. Default is
'linear'
formethod="single"
, and'nearest'
formethod="table"
.linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
- columnslist of str
List of column names to include.
- exactboolean
Whether to use approximate or exact quantile algorithm.
- method{‘single’, ‘table’}, default ‘single’
Whether to compute quantiles per-column (‘single’) or over all columns (‘table’). When ‘table’, the only allowed interpolation methods are ‘nearest’, ‘lower’, and ‘higher’.
- Returns:
- Series or DataFrame
If q is an array or numeric_only is set to False, a DataFrame will be returned where index is q, the columns are the columns of self, and the values are the quantile.
If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Examples
>>> import cupy as cp >>> import cudf >>> df = cudf.DataFrame(cp.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df a b 0 1 1 1 2 10 2 3 100 3 4 100 >>> df.quantile(0.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0
Pandas Compatibility Note
One notable difference from Pandas is when DataFrame is of non-numeric types and result is expected to be a Series in case of Pandas. cuDF will return a DataFrame as it doesn’t support mixed types under Series.