cudf.DataFrame.to_pandas#
- DataFrame.to_pandas(*, nullable: bool = False, arrow_type: bool = False) DataFrame [source]#
Convert to a Pandas DataFrame.
- Parameters:
- nullableBoolean, Default False
If
nullable
isTrue
, the resulting columns in the dataframe will be having a corresponding nullable Pandas dtype. If there is no corresponding nullable Pandas dtype present, the resulting dtype will be a regular pandas dtype. Ifnullable
isFalse
, the resulting columns will either convert null values tonp.nan
orNone
depending on the dtype.- arrow_typebool, Default False
Return the columns with a
pandas.ArrowDtype
- Returns:
- outPandas DataFrame
Notes
nullable and arrow_type cannot both be set to
True
Examples
>>> import cudf >>> df = cudf.DataFrame({'a': [0, 1, 2], 'b': [-3, 2, 0]}) >>> pdf = df.to_pandas() >>> pdf a b 0 0 -3 1 1 2 2 2 0 >>> type(pdf) <class 'pandas.core.frame.DataFrame'>
nullable=True
converts the result to pandas nullable types:>>> df = cudf.DataFrame({'a': [0, None, 2], 'b': [True, False, None]}) >>> df a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf = df.to_pandas(nullable=True) >>> pdf a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf.dtypes a Int64 b boolean dtype: object >>> pdf = df.to_pandas(nullable=False) >>> pdf a b 0 0.0 True 1 NaN False 2 2.0 None >>> pdf.dtypes a float64 b object dtype: object
arrow_type=True
converts the result topandas.ArrowDtype
:>>> df.to_pandas(arrow_type=True).dtypes a int64[pyarrow] b bool[pyarrow] dtype: object