cudf.DataFrame.value_counts#
- DataFrame.value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True)[source]#
Return a Series containing counts of unique rows in the DataFrame.
- Parameters:
- subset: list-like, optional
Columns to use when counting unique combinations.
- normalize: bool, default False
Return proportions rather than frequencies.
- sort: bool, default True
Sort by frequencies.
- ascending: bool, default False
Sort in ascending order.
- dropna: bool, default True
Don’t include counts of rows that contain NA values.
- Returns:
- Series
Notes
The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row.
Examples
>>> import cudf >>> df = cudf.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts().sort_index() num_legs num_wings 2 2 1 4 0 2 6 0 1 Name: count, dtype: int64