cudf.Index.is_categorical#

Index.is_categorical()[source]#

Check if the Index holds categorical data.

Deprecated since version 23.04: Use cudf.api.types.is_categorical_dtype instead.

Returns:
bool

True if the Index is categorical.

See also

CategoricalIndex

Index for categorical data.

is_boolean

Check if the Index only consists of booleans.

is_integer

Check if the Index only consists of integers.

is_floating

Check if the Index is a floating type.

is_numeric

Check if the Index only consists of numeric data.

is_object

Check if the Index is of the object dtype.

is_interval

Check if the Index holds Interval objects.

Examples

>>> import cudf
>>> idx = cudf.Index(["Watermelon", "Orange", "Apple",
...                 "Watermelon"]).astype("category")
>>> idx.is_categorical()
True
>>> idx = cudf.Index([1, 3, 5, 7])
>>> idx.is_categorical()
False
>>> s = cudf.Series(["Peter", "Victor", "Elisabeth", "Mar"])
>>> s
0        Peter
1       Victor
2    Elisabeth
3          Mar
dtype: object
>>> s.index.is_categorical()
False