cudf.Index.sort_values#
- Index.sort_values(return_indexer=False, ascending=True, na_position='last', key=None) Self | tuple[Self, cupy.ndarray] [source]#
Return a sorted copy of the index, and optionally return the indices that sorted the index itself.
- Parameters:
- return_indexerbool, default False
Should the indices that would sort the index be returned.
- ascendingbool, default True
Should the index values be sorted in an ascending order.
- na_position{‘first’ or ‘last’}, default ‘last’
Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.
- keyNone, optional
This parameter is NON-FUNCTIONAL.
- Returns:
- sorted_indexIndex
Sorted copy of the index.
- indexercupy.ndarray, optional
The indices that the index itself was sorted by.
See also
cudf.Series.min
Sort values of a Series.
cudf.DataFrame.sort_values
Sort values in a DataFrame.
Examples
>>> import cudf >>> idx = cudf.Index([10, 100, 1, 1000]) >>> idx Index([10, 100, 1, 1000], dtype='int64')
Sort values in ascending order (default behavior).
>>> idx.sort_values() Index([1, 10, 100, 1000], dtype='int64')
Sort values in descending order, and also get the indices idx was sorted by.
>>> idx.sort_values(ascending=False, return_indexer=True) (Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2], dtype=int32))
Sorting values in a MultiIndex:
>>> midx = cudf.MultiIndex( ... levels=[[1, 3, 4, -10], [1, 11, 5]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx MultiIndex([( 1, 1), ( 1, 5), ( 3, 11), ( 4, 11), (-10, 1)], names=['x', 'y']) >>> midx.sort_values() MultiIndex([(-10, 1), ( 1, 1), ( 1, 5), ( 3, 11), ( 4, 11)], names=['x', 'y']) >>> midx.sort_values(ascending=False) MultiIndex([( 4, 11), ( 3, 11), ( 1, 5), ( 1, 1), (-10, 1)], names=['x', 'y'])