cudf.Series.all#

Series.all(axis=0, bool_only=None, skipna=True, **kwargs)[source]#

Return whether all elements are True in DataFrame.

Parameters:
axis{0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.

  • 0 or ‘index’reduce the index, return a Series

    whose index is the original column labels.

  • 1 or ‘columns’reduce the columns, return a Series

    whose index is the original index.

  • None : reduce all axes, return a scalar.

skipna: bool, default True

Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.

Returns:
Series

Notes

Parameters currently not supported are bool_only.

Examples

>>> import cudf
>>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]})
>>> df.all()
a     True
b    False
dtype: bool

Pandas Compatibility Note

pandas.DataFrame.all(), pandas.Series.all()

Parameters currently not supported are axis, bool_only, level.