cudf.Series.reset_index#
- Series.reset_index(level=None, drop=False, name=_NoDefault.no_default, inplace=False, allow_duplicates=False)[source]#
Reset the index of the Series, or a level of it.
- Parameters:
- levelint, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default.
- dropbool, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.
- nameobject, optional
The name to use for the column containing the original Series values. Uses self.name by default. This argument is ignored when
drop
is True.- inplacebool, default False
Modify the DataFrame in place (do not create a new object).
- allow_duplicatesbool, default False
Allow duplicate column labels to be created. Currently not supported.
- Returns:
- Series or DataFrame or None
Series with the new index or None if
inplace=True
. For Series, When drop is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When drop is True, a Series is returned. In either case, ifinplace=True
, no value is returned.
Examples
>>> series = cudf.Series(['a', 'b', 'c', 'd'], index=[10, 11, 12, 13]) >>> series 10 a 11 b 12 c 13 d dtype: object >>> series.reset_index() index 0 0 10 a 1 11 b 2 12 c 3 13 d >>> series.reset_index(drop=True) 0 a 1 b 2 c 3 d dtype: object
You can also use
reset_index
with MultiIndex.>>> s2 = cudf.Series( ... range(4), name='foo', ... index=cudf.MultiIndex.from_tuples([ ... ('bar', 'one'), ('bar', 'two'), ... ('baz', 'one'), ('baz', 'two')], ... names=['a', 'b'] ... )) >>> s2 a b bar one 0 two 1 baz one 2 two 3 Name: foo, dtype: int64 >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3