cudf.core.column.string.StringMethods.cat#
- StringMethods.cat(sep: str | None = None, na_rep: str | None = None) str [source]#
- StringMethods.cat(others, sep: str | None = None, na_rep: str | None = None) SeriesOrIndex | 'cudf.core.column.string.StringColumn'
Concatenate strings in the Series/Index with given separator.
If
others
is specified, this function concatenates the Series/Index and elements of others element-wise. If others is not passed, then all values in the Series/Index are concatenated into a single string with a given sep.- Parameters:
- othersSeries or List of str
Strings to be appended. The number of strings must match
size()
of this instance. This must be either a Series of string dtype or a Python list of strings.- sepstr
If specified, this separator will be appended to each string before appending the others.
- na_repstr
This character will take the place of any null strings (not empty strings) in either list.
If
na_rep
isNone
, andothers
isNone
, missing values in the Series/Index are omitted from the result.If
na_rep
isNone
, andothers
is notNone
, a row containing a missing value in any of the columns (before concatenation) will have a missing value in the result.
- Returns:
- concatstr or Series/Index of str dtype
If
others
isNone
,str
is returned, otherwise aSeries/Index
(same type as caller) of str dtype is returned.
Examples
>>> import cudf >>> s = cudf.Series(['a', 'b', None, 'd']) >>> s.str.cat(sep=' ') 'a b d'
By default, NA values in the Series are ignored. Using na_rep, they can be given a representation:
>>> s.str.cat(sep=' ', na_rep='?') 'a b ? d'
If others is specified, corresponding values are concatenated with the separator. Result will be a Series of strings.
>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') 0 a,A 1 b,B 2 <NA> 3 d,D dtype: object
Missing values will remain missing in the result, but can again be represented using na_rep
>>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') 0 a,A 1 b,B 2 -,C 3 d,D dtype: object
If sep is not specified, the values are concatenated without separation.
>>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') 0 aA 1 bB 2 -C 3 dD dtype: object