pylibcudf documentation ======================= pylibcudf is a lightweight Cython interface to libcudf that provides near-zero overhead for GPU-accelerated data processing in Python. It aims to provide minimal overhead interfaces to the C++ libcudf library, while integrating seamlessly with community protocols like ``__cuda_array_interface__``, and common libraries such as CuPy and Numba. Both our zero-code pandas accelerator (``cudf.pandas``) and our polars GPU execution engine (``cudf.polars``) are built on top of pylibcudf. Ex: Reading data from a parquet file pylibcudf: .. code-block:: python import pylibcudf as plc source = plc.io.SourceInfo(["dataset.parquet"]) options = plc.io.parquet.ParquetReaderOptions.builder(source).build() table = plc.io.parquet.read_parquet(options) libcudf: .. code-block:: cpp #include <cudf/io/parquet.hpp> int main() { auto source = cudf::io::source_info("dataset.parquet"); auto options = cudf::io::parquet_reader_options::builder(source).build(); auto table = cudf::io::read_parquet(options); } .. toctree:: :maxdepth: 1 :caption: Contents: api_docs/index.rst developer_docs