Transformation Transform#
- group transformation_transform
Functions
-
std::unique_ptr<column> transform(column_view const &input, std::string const &unary_udf, data_type output_type, bool is_ptx, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Creates a new column by applying a unary function against every element of an input column.
Computes:
out[i] = F(in[i])
The output null mask is the same is the input null mask so if input[i] is null then output[i] is also null
- Parameters:
input – An immutable view of the input column to transform
unary_udf – The PTX/CUDA string of the unary function to apply
output_type – The output type that is compatible with the output type in the UDF
is_ptx – true: the UDF is treated as PTX code; false: the UDF is treated as CUDA code
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
The column resulting from applying the unary function to every element of the input
-
std::pair<std::unique_ptr<rmm::device_buffer>, size_type> nans_to_nulls(column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Creates a null_mask from
input
by convertingNaN
to null and preserving existing null values and also returns new null_count.- Throws:
cudf::logic_error – if
input.type()
is a non-floating type- Parameters:
input – An immutable view of the input column of floating-point type
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned bitmask
- Returns:
A pair containing a
device_buffer
with the new bitmask and it’s null count obtained by replacingNaN
ininput
with null.
-
std::unique_ptr<column> compute_column(table_view const &table, ast::expression const &expr, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Compute a new column by evaluating an expression tree on a table.
This evaluates an expression over a table to produce a new column. Also called an n-ary transform.
- Throws:
cudf::logic_error – if passed an expression operating on table_reference::RIGHT.
- Parameters:
table – The table used for expression evaluation
expr – The root of the expression tree
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource
- Returns:
Output column
-
std::pair<std::unique_ptr<rmm::device_buffer>, cudf::size_type> bools_to_mask(column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Creates a bitmask from a column of boolean elements.
If element
i
ininput
istrue
, biti
in the resulting mask is set (1
). Else, if elementi
isfalse
or null, biti
is unset (0
).- Throws:
cudf::logic_error – if
input.type()
is a non-boolean type- Parameters:
input – Boolean elements to convert to a bitmask
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned bitmask
- Returns:
A pair containing a
device_buffer
with the new bitmask and it’s null count obtained from input consideringtrue
representvalid
/1
andfalse
representinvalid
/0
.
-
std::pair<std::unique_ptr<cudf::table>, std::unique_ptr<cudf::column>> encode(cudf::table_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Encode the rows of the given table as integers.
The encoded values are integers in the range [0, n), where
n
is the number of distinct rows in the input table. The result table is such thatkeys[result[i]] == input[i]
, wherekeys
is a table containing the distinct rows ininput
in sorted ascending order. Nulls, if any, are sorted to the end of thekeys
table.Examples:
input: [{'a', 'b', 'b', 'a'}] output: [{'a', 'b'}], {0, 1, 1, 0} input: [{1, 3, 1, 2, 9}, {1, 2, 1, 3, 5}] output: [{1, 2, 3, 9}, {1, 3, 2, 5}], {0, 2, 0, 1, 3}
- Parameters:
input – Table containing values to be encoded
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned table’s device memory
- Returns:
A pair containing the distinct row of the input table in sorter order, and a column of integer indices representing the encoded rows.
-
std::pair<std::unique_ptr<column>, table_view> one_hot_encode(column_view const &input, column_view const &categories, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Encodes
input
by generating a new column for each value incategories
indicating the presence of that value ininput
.The resulting per-category columns are returned concatenated as a single column viewed by a
table_view
.The
i
th row of thej
th column in the output table equals 1 ifinput[i] == categories[j]
, and 0 otherwise.The
i
th row of thej
th column in the output table equals 1 if input[i] == categories[j], and 0 otherwise.Examples:
input: [{'a', 'c', null, 'c', 'b'}] categories: ['c', null] output: [{0, 1, 0, 1, 0}, {0, 0, 1, 0, 0}]
- Throws:
cudf::logic_error – if input and categories are of different types.
- Parameters:
input – Column containing values to be encoded
categories – Column containing categories
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned table’s device memory
- Returns:
A pair containing the owner to all encoded data and a table view into the data
-
std::unique_ptr<column> mask_to_bools(bitmask_type const *bitmask, size_type begin_bit, size_type end_bit, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Creates a boolean column from given bitmask.
Returns a
bool
for each bit in[begin_bit, end_bit)
. If biti
in least-significant bit numbering is set (1), then elementi
in the output istrue
, otherwisefalse
.Examples:
input: {0b10101010} output: [{false, true, false, true, false, true, false, true}]
- Throws:
cudf::logic_error – if
bitmask
is null and end_bit-begin_bit > 0cudf::logic_error – if begin_bit > end_bit
- Parameters:
bitmask – A device pointer to the bitmask which needs to be converted
begin_bit – position of the bit from which the conversion should start
end_bit – position of the bit before which the conversion should stop
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned columns’ device memory
- Returns:
A boolean column representing the given mask from [begin_bit, end_bit)
-
std::unique_ptr<column> row_bit_count(table_view const &t, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Returns an approximate cumulative size in bits of all columns in the
table_view
for each row.This function counts bits instead of bytes to account for the null mask which only has one bit per row.
Each row in the returned column is the sum of the per-row size for each column in the table.
In some cases, this is an inexact approximation. Specifically, columns of lists and strings require N+1 offsets to represent N rows. It is up to the caller to calculate the small additional overhead of the terminating offset for any group of rows being considered.
This function returns the per-row sizes as the columns are currently formed. This can end up being larger than the number you would get by gathering the rows. Specifically, the push-down of struct column validity masks can nullify rows that contain data for string or list columns. In these cases, the size returned is conservative:
row_bit_count(column(x)) >= row_bit_count(gather(column(x)))
- Parameters:
t – The table view to perform the computation on
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned columns’ device memory
- Returns:
A 32-bit integer column containing the per-row bit counts
-
std::unique_ptr<column> segmented_row_bit_count(table_view const &t, size_type segment_length, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#
Returns an approximate cumulative size in bits of all columns in the
table_view
for each segment of rows.This is similar to counting bit size per row for the input table in
cudf::row_bit_count
, except that row sizes are accumulated by segments.Currently, only fixed-length segments are supported. In case the input table has number of rows not divisible by
segment_length
, its last segment is considered as shorter than the others.- Throws:
std::invalid_argument – if the input
segment_length
is non-positive or larger than the number of rows in the input table.- Parameters:
t – The table view to perform the computation on
segment_length – The number of rows in each segment for which the total size is computed
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned columns’ device memory
- Returns:
A 32-bit integer column containing the bit counts for each segment of rows
-
std::unique_ptr<column> transform(column_view const &input, std::string const &unary_udf, data_type output_type, bool is_ptx, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::device_async_resource_ref mr = cudf::get_current_device_resource_ref())#