cudf.Series.dropna#
- Series.dropna(axis: Axis = 0, inplace: bool = False, how: Literal['any', 'all'] | None = None, ignore_index: bool = False) Self | None[source]#
Return a Series with null values removed.
- Parameters:
- axis{0 or ‘index’}, default 0
There is only one axis to drop values from.
- inplacebool, default False
If True, do operation inplace and return None.
- howstr, optional
Not in use. Kept for compatibility.
- ignore_indexbool, default
False If
True, the resulting axis will be labeled 0, 1, …, n - 1.
- Returns:
- Series
Series with null entries dropped from it.
See also
Series.isnaIndicate null values.
Series.notnaIndicate non-null values.
Series.fillnaReplace null values.
cudf.DataFrame.dropnaDrop rows or columns which contain null values.
cudf.Index.dropnaDrop null indices.
Examples
>>> import cudf >>> ser = cudf.Series([1, 2, None]) >>> ser 0 1 1 2 2 <NA> dtype: int64
Drop null values from a Series.
>>> ser.dropna() 0 1 1 2 dtype: int64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1 1 2 dtype: int64
Empty strings are not considered null values. None is considered a null value.
>>> ser = cudf.Series(['', None, 'abc']) >>> ser 0 1 <NA> 2 abc dtype: object >>> ser.dropna() 0 2 abc dtype: object