cudf.Series.reindex#
- Series.reindex(index=None, *, axis: Axis | None = None, method: str | None = None, copy: bool = True, level=None, fill_value: ScalarLike | None = None, limit: int | None = None, tolerance=None) Self[source]#
Conform Series to new index.
- Parameters:
- indexIndex, Series-convertible, default None
New labels / index to conform to, should be specified using keywords.
- axis: int, default None
Unused.
- method: Not Supported
- copyboolean, default True
- level: Not Supported
- fill_valueValue to use for missing values.
Defaults to
NA, but can be any “compatible” value.- limit: Not Supported
- tolerance: Not Supported
- Returns:
- Series with changed index.
Examples
>>> import cudf >>> series = cudf.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) >>> series a 10 b 20 c 30 d 40 dtype: int64 >>> series.reindex(['a', 'b', 'y', 'z']) a 10 b 20 y <NA> z <NA> dtype: int64
Pandas Compatibility Note
Note: One difference from Pandas is that
NAis used for rows that do not match, rather thanNaN. One side effect of this is that the series retains an integer dtype in cuDF where it is cast to float in Pandas.