GroupBy#
cuDF supports a small (but important) subset of Pandas’ groupby API.
Summary of supported operations#
Grouping by one or more columns
Basic aggregations such as “sum”, “mean”, etc.
Quantile aggregation
A “collect” or
list
aggregation for collecting values in a group into listsAutomatic exclusion of columns with unsupported dtypes (“nuisance” columns) when aggregating
Iterating over the groups of a GroupBy object
GroupBy.groups
API that returns a mapping of group keys to row labelsGroupBy.apply
API for performing arbitrary operations on each group. Note that this has very limited functionality compared to the equivalent Pandas function. See the section on apply for more details.GroupBy.pipe
similar to Pandas.
Grouping#
A GroupBy object is created by grouping the values of a Series
or
DataFrame
by one or more columns:
>>> import cudf
>>> df = cudf.DataFrame({'a': [1, 1, 1, 2, 2], 'b': [1, 1, 2, 2, 3], 'c': [1, 2, 3, 4, 5]})
>>> df
a b c
0 1 1 1
1 1 1 2
2 1 2 3
3 2 2 4
4 2 3 5
>>> gb1 = df.groupby('a') # grouping by a single column
>>> gb2 = df.groupby(['a', 'b']) # grouping by multiple columns
>>> gb3 = df.groupby(cudf.Series(['a', 'a', 'b', 'b', 'b'])) # grouping by an external column
Warning
Unlike Pandas, cuDF uses sort=False
by default to achieve better
performance, which does not guarantee any particular group order in
the result.
For example:
>>> df = cudf.DataFrame({'a' : [2, 2, 1], 'b' : [42, 21, 11]})
>>> df.groupby('a').sum()
b
a
2 63
1 11
>>> df.to_pandas().groupby('a').sum()
b
a
1 11
2 63
Setting sort=True
will produce Pandas-like output, but with some performance penalty:
>>> df.groupby('a', sort=True).sum()
b
a
1 11
2 63
Grouping by index levels#
You can also group by one or more levels of a MultiIndex:
>>> df = cudf.DataFrame(
... {'a': [1, 1, 1, 2, 2], 'b': [1, 1, 2, 2, 3], 'c': [1, 2, 3, 4, 5]}
... ).set_index(['a', 'b'])
...
>>> df.groupby(level='a')
The Grouper
object#
A Grouper
can be used to disambiguate between columns and levels
when they have the same name:
>>> df
b c
b
1 1 1
1 1 2
1 2 3
2 2 4
2 3 5
>>> df.groupby('b', level='b') # ValueError: Cannot specify both by and level
>>> df.groupby([cudf.Grouper(key='b'), cudf.Grouper(level='b')]) # OK
Aggregation#
Aggregations on groups are supported via the agg
method:
>>> df
a b c
0 1 1 1
1 1 1 2
2 1 2 3
3 2 2 4
4 2 3 5
>>> df.groupby('a').agg('sum')
b c
a
1 4 6
2 5 9
>>> df.groupby('a').agg({'b': ['sum', 'min'], 'c': 'mean'})
b c
sum min mean
a
1 4 1 2.0
2 5 2 4.5
>>> df.groupby("a").corr(method="pearson")
b c
a
1 b 1.000000 0.866025
c 0.866025 1.000000
2 b 1.000000 1.000000
c 1.000000 1.000000
The following table summarizes the available aggregations and the types that support them:
Aggregations / dtypes |
Numeric |
Datetime |
String |
Categorical |
List |
Struct |
Interval |
Decimal |
---|---|---|---|---|---|---|---|---|
count |
✅ |
✅ |
✅ |
✅ |
✅ |
|||
size |
✅ |
✅ |
✅ |
✅ |
✅ |
|||
sum |
✅ |
✅ |
✅ |
|||||
idxmin |
✅ |
✅ |
✅ |
|||||
idxmax |
✅ |
✅ |
✅ |
|||||
min |
✅ |
✅ |
✅ |
✅ |
||||
max |
✅ |
✅ |
✅ |
✅ |
||||
mean |
✅ |
✅ |
||||||
var |
✅ |
✅ |
||||||
std |
✅ |
✅ |
||||||
quantile |
✅ |
✅ |
||||||
median |
✅ |
✅ |
||||||
nunique |
✅ |
✅ |
✅ |
✅ |
✅ |
|||
nth |
✅ |
✅ |
✅ |
✅ |
||||
collect |
✅ |
✅ |
✅ |
✅ |
✅ |
|||
unique |
✅ |
✅ |
✅ |
✅ |
||||
corr |
✅ |
✅ |
||||||
cov |
✅ |
✅ |
GroupBy apply#
To apply function on each group, use the GroupBy.apply()
method:
>>> df
a b c
0 1 1 1
1 1 1 2
2 1 2 3
3 2 2 4
4 2 3 5
>>> df.groupby('a').apply(lambda x: x.max() - x.min())
a b c
a
0 0 1 2
1 0 1 1
Limitations#
apply
works by applying the provided function to each group sequentially, and concatenating the results together. This can be very slow, especially for a large number of small groups. For a small number of large groups, it can give acceptable performance.The results may not always match Pandas exactly. For example, cuDF may return a
DataFrame
containing a single column where Pandas returns aSeries
. Some post-processing may be required to match Pandas behavior.cuDF does not support some of the exceptional cases that Pandas supports with
apply
, such as calling describe inside the callable.
Transform#
The .transform()
method aggregates per group, and broadcasts the
result to the group size, resulting in a Series/DataFrame that is of
the same size as the input Series/DataFrame.
>>> import cudf
>>> df = cudf.DataFrame({'a': [2, 1, 1, 2, 2], 'b': [1, 2, 3, 4, 5]})
>>> df.groupby('a').transform('max')
b
0 5
1 3
2 3
3 5
4 5
Rolling window calculations#
Use the GroupBy.rolling()
method to perform rolling window
calculations on each group:
>>> df
a b c
0 1 1 1
1 1 1 2
2 1 2 3
3 2 2 4
4 2 3 5
Rolling window sum on each group with a window size of 2:
>>> df.groupby('a').rolling(2).sum()
a b c
a
1 0 <NA> <NA> <NA>
1 2 2 3
2 2 3 5
2 3 <NA> <NA> <NA>
4 4 5 9