pylibcugraphops.dimenet.agg_edge_to_edge_fwd#
- pylibcugraphops.dimenet.agg_edge_to_edge_fwd = <nanobind.nb_func object>#
Computes the forward pass for Dimenet++ interaction block aggregation layer.
agg_edge_to_edge_fwd( output_embedding: device array, input_vector: device array, input_rbf: device array, input_embedding: device array, input_weights: device array, coo_idx: device array, dst_offsets: device array, dst_edge_index: device array, mma_operation: pylibcugraphops.MMAOp, cuda_stream: int = 0 )
- We define the following dimensions:
n_spherical: number of spherical basis functions. Must be 7.
n_radial: number of radial basis functions. Must be 6.
n_vec: number of vector/position dimensions. Must be 3.
n_emb: input/output embedding dimension. Assumed to be at most 64.
- n_mid: we project the spherical basis features twice: once to feature
dimension n_mid, and then to feature dimension n_emb. Assumed to be at most 8.
- Parameters:
- output_embeddingdevice array type
Device array containing the output embeddings values. Dimension is assumed to be [#edges, n_emb].
- input_vectordevice array type
Device array containing the vector values (position of input node - position of output node + edge offsets) for each edge. Dimension is assumed to be [#edges, n_vec].
- input_rbfdevice array type
Device array containing the radial basis features used for calculating the spherical basis features. Dimension is assumed to be [#edges, n_spherical * n_radial].
- input_embeddingdevice array type
Device array containing the input embeddings values. Dimension is assumed to be [#edges, n_emb].
- input_weightsdevice array type
Device array containing the weights used to project spherical basis features twice: first to “middle” dimension n_mid, then to embedding dimension n_emb. The weights are represented in a combined form with the second projection weights being transposed. Dimension is assumed to be [(n_spherical * n_radial) + n_emb, n_mid].
- coo_idxdevice array type
Device array containing the COO index of the graph. Dimension is assumed to be [2, #edges].
- dst_offsetsdevice array type
Device array containing the CSR-like offsets of the destination nodes. Dimension is assumed to be [#nodes + 1].
- dst_edge_indexdevice array type
Device array containing the CSR-like indices of mapping the neighbors of destination nodes to edge IDs. Dimension is assumed to be [#edges].
- mma_operationpylibcugraphops.MMAOp
MMA precision: pylibcugraphops.MMAOp.HighPrecision performs 3x TF32 operations while pylibcugraphops.MMAOp.LowPrecision performs 1x TF32 MMA operation
- cuda_streamint, default=0
CUDA stream as an integer representing the raw pointer