pylibcugraphops.operators.agg_simple_n2n_e2n_fwd#
- pylibcugraphops.operators.agg_simple_n2n_e2n_fwd = <nanobind.nb_func object>#
- Computes the forward pass for both a simple aggregation (agg_simple) using node features in an
node-to-node reduction (n2n) and a simple aggregation using edge features in an edge-to-node reduction (e2n) on a graph where the results are concatenated.
agg_simple_n2n_e2n_fwd( output_embedding: device array, input_node_embedding: device array, input_edge_embedding: device array, graph: Union[pylibcugraphops.csc_int[32|64], pylibcugraphops.bipartite_csc_int[32|64]], aggregation_operation: pylibcugraphops.operators.AggOp = pylibcugraphops.operators.AggOp.Sum, output_extrema_location: Optional[device array] = None, stream_id: int = 0 ) -> None
- Parameters:
- output_embeddingdevice array type
Device array containing the output node embeddings. Shape:
(graph.n_dst_nodes, dim_in_node + dim_in_edge)
.- input_node_embeddingdevice array type
Device array containing the input node embeddings. Shape:
(graph.n_dst_nodes, dim_in_node)
.- input_edge_embeddingdevice array type
Device array containing the input edge embeddings. Shape:
(n_edges, dim_in_edge)
.- graphopaque graph type
The graph used for the operation.
- aggregation_operationAggOp, default=AggOp.Sum
The kind of aggregation operation.
- output_extrema_locationdevice array type | None
Device array containing the location of the min/max embeddings. This is required for min/max aggregation only, and can be
None
otherwise. Shape:(graph.n_dst_nodes, dim_in_node + dim_in_edge)
if set.- stream_idint, default=0
CUDA stream pointer as a python int.