pylibcugraphops.pytorch.operators.update_efeat_e2e#
- pylibcugraphops.pytorch.operators.update_efeat_e2e(edge_feat: Optional[Tensor], node_feat: Union[Tensor, Tuple[Optional[Tensor]]], graph: CSC, use_source_emb: bool, use_target_emb: bool, mode: str = 'concat') Tensor #
PyTorch autograd function for creating new edge features (update_efeat) based on either concatenating or summing edge features and the features of the corresponding source and destination node of each edge in an edge-to-edge fashion (e2e).
- Parameters:
- edge_feattorch.Tensor | None
The input edge features - ignored if passed as
None
. Shape:(num_indices, dim_edge)
.- node_feattorch.Tensor | Tuple[torch.Tensor] | None
The input source features. For bipartite graphs, a tuple of source and destionations node features with shapes
(num_src_nodes, dim_src)
and(num_dst_nodes, dim_dst)
respectively is expected. For non-bipartite graph, a single tensor of node features of shape(num_dst_nodes, dim_node)
is expected withdim_src = dim_dst = dim_node
.- use_source_embbool
whether to use node embeddings indexed by indices of source nodes
- use_target_embbool
whether to use node embeddings indexed by indices of source nodes
- graphCSC
The graph used for the operation.
- modestr, default=”concat”
Mode of update, either
"concat"
or"sum"
.
- Returns:
- outputtorch.Tensor
The output after either concatenation or summation. Shape for
mode=concat
:(num_indices, dim_edge + dim_src + dim_dst)
. Shape formode=sum
:(num_indices, dim_edge)
.