cugraph_pyg.loader.dask_node_loader.DaskNeighborLoader#

class cugraph_pyg.loader.dask_node_loader.DaskNeighborLoader(data: Union[DaskGraphStore, Tuple[DaskGraphStore, DaskGraphStore]], input_nodes: Union[Tensor, None, str, Tuple[str, Optional[Tensor]], int] = None, batch_size: Optional[int] = None, **kwargs)[source]#

Duck-typed version of the PyG NeighborLoader interface that uses Dask to sample nodes using the uniform neighbor sampling algorithm.

Attributes:
batch_size
__init__(data: Union[DaskGraphStore, Tuple[DaskGraphStore, DaskGraphStore]], input_nodes: Union[Tensor, None, str, Tuple[str, Optional[Tensor]], int] = None, batch_size: Optional[int] = None, **kwargs)[source]#

Constructs a new DaskNeighborLoader object.

Parameters:
data: DaskGraphStore or (DaskGraphStore, DaskGraphStore)

The DaskGraphStore or stores where the graph/feature data is held.

batch_size: int (required)

The number of input nodes in each batch.

input_nodes: Union[InputNodes, int] (required)

The input nodes associated with this sampler.

**kwargs: kwargs

Keyword arguments to pass through for sampling. i.e. “shuffle”, “fanout” See BulkSampleLoader.

Methods

__init__(data[, input_nodes, batch_size])

Constructs a new DaskNeighborLoader object.

Attributes

batch_size