cugraph_pyg.loader.node_loader.NodeLoader#
- class cugraph_pyg.loader.node_loader.NodeLoader(data: Data | HeteroData | Tuple[FeatureStore, GraphStore], node_sampler: BaseSampler, input_nodes: Tensor | None | str | Tuple[str, Tensor | None] = None, input_time: Tensor | None = None, transform: Callable | None = None, transform_sampler_output: Callable | None = None, filter_per_worker: bool | None = None, custom_cls: HeteroData | None = None, input_id: Tensor | None = None, batch_size: int = 1, shuffle: bool = False, drop_last: bool = False, **kwargs)[source]#
Duck-typed version of torch_geometric.loader.NodeLoader. Loads samples from batches of input nodes using a ~cugraph_pyg.sampler.BaseSampler.sample_from_nodes function.
- __init__(data: Data | HeteroData | Tuple[FeatureStore, GraphStore], node_sampler: BaseSampler, input_nodes: Tensor | None | str | Tuple[str, Tensor | None] = None, input_time: Tensor | None = None, transform: Callable | None = None, transform_sampler_output: Callable | None = None, filter_per_worker: bool | None = None, custom_cls: HeteroData | None = None, input_id: Tensor | None = None, batch_size: int = 1, shuffle: bool = False, drop_last: bool = False, **kwargs)[source]#
- Parameters:
- data: Data, HeteroData, or Tuple[FeatureStore, GraphStore]
See torch_geometric.loader.NodeLoader.
- node_sampler: BaseSampler
See torch_geometric.loader.NodeLoader.
- input_nodes: InputNodes
See torch_geometric.loader.NodeLoader.
- input_time: OptTensor
See torch_geometric.loader.NodeLoader.
- transform: Callable (optional, default=None)
This argument currently has no effect.
- transform_sampler_output: Callable (optional, default=None)
This argument currently has no effect.
- filter_per_worker: bool (optional, default=False)
This argument currently has no effect.
- custom_cls: HeteroData
This argument currently has no effect. This loader will always return a Data or HeteroData object.
- input_id: OptTensor
See torch_geometric.loader.NodeLoader.
Methods
__init__
(data, node_sampler[, input_nodes, ...])