cugraph.dask.sampling.random_walks.random_walks#

cugraph.dask.sampling.random_walks.random_walks(input_graph, random_walks_type='uniform', start_vertices=None, max_depth=None, use_padding=None, legacy_result_type=None)[source]#

compute random walks for each nodes in ‘start_vertices’ and returns a padded result along with the maximum path length. Vertices with no outgoing edges will be padded with -1.

Parameters:
input_graphcuGraph.Graph

The graph can be either directed or undirected.

random_walks_typestr, optional (default=’uniform’)

Type of random walks: ‘uniform’, ‘biased’, ‘node2vec’. Only ‘uniform’ random walks is currently supported

start_verticesint or list or cudf.Series or cudf.DataFrame

A single node or a list or a cudf.Series of nodes from which to run the random walks. In case of multi-column vertices it should be a cudf.DataFrame

max_depthint

The maximum depth of the random walks

use_paddingbool

This parameter is here for SG compatibility and ignored

legacy_result_typebool

This parameter is here for SG compatibility and ignored

Returns:
vertex_pathsdask_cudf.Series or dask_cudf.DataFrame

Series containing the vertices of edges/paths in the random walk.

edge_weight_paths: dask_cudf.Series

Series containing the edge weights of edges represented by the returned vertex_paths

max_path_lengthint

The maximum path length