cugraph.experimental.PropertyGraph.edge_props_to_graph#
- PropertyGraph.edge_props_to_graph(edge_prop_df, create_using, edge_weight_property=None, default_edge_weight=None, check_multi_edges=True, renumber_graph=True, add_edge_data=True)[source]#
Create a Graph from the edges in edge_prop_df.
- Parameters:
- edge_prop_dfcudf.DataFrame or pandas.DataFrame
conains the edge data with properties
- create_usingcugraph.Graph (or subclass of) instance.
Attributes of the graph are passed to the returned graph.
- edge_weight_propertystring, optional
Property used to weight the returned graph.
- default_edge_weightfloat64, optional
Value used to replace NA in the specified weight column
- check_multi_edgesbool, optional (default=True)
Prevent duplicate edges (if not allowed)
- renumber_graphbool, optional (default=True)
If True renumber edge Ids to start at 0, otherwise maintain the original ids
- add_edge_data bool, optional(default=True)
- Returns:
- A CuGraph or NetworkX Graph
contains the edges in edge_prop_df
Examples
>>> import cugraph >>> import cudf >>> from cugraph.experimental import PropertyGraph >>> df = cudf.DataFrame(columns=["src", "dst", "some_property"], ... data=[(99, 22, "a"), ... (98, 34, "b"), ... (97, 56, "c"), ... (96, 88, "d"), ... ]) >>> pG = PropertyGraph() >>> pG.add_edge_data(df, type_name="etype", vertex_col_names=("src", "dst")) >>> G = pG.edge_props_to_graph(pG.edges, ... create_using=cugraph.Graph(), ... renumber_graph=False) >>> G.edges() src dst 0 88 96 1 22 99 2 56 97 3 34 98