pylibcugraphops.operators.agg_weighted_n2n_fwd#
- pylibcugraphops.operators.agg_weighted_n2n_fwd = <nanobind.nb_func object>#
- Computes the forward pass for a weighted aggregation (agg_weighted) using node features in an
node-to-node reduction (n2n). The reduction operates on a graph and each incoming message is weighted according to its edge weight.
agg_weighted_n2n_fwd( output_embedding: device array, input_embedding: device array, edge_weight: device array, graph: Union[pylibcugraphops.csc_int[32|64], pylibcugraphops.bipartite_csc_int[32|64]], aggregation_operation: pylibcugraphops.operators.AggOp = pylibcugraphops.operators.AggOp.Sum, output_extrema_location: Optional[device array] = None, node_degree: Optional[device array], stream_id: int = 0 ) -> None
- Parameters:
- output_embeddingdevice array type
Device array containing the output node embeddings. Shape:
(graph.n_dst_nodes, dim)
.- input_embeddingdevice array type
Device array containing the input node embeddings. Shape:
(graph.n_dst_nodes, dim)
.- edge_weight: device array type
Device array containing the edge weights. Shape:
(n_edges, )
.- graphopaque graph type
The graph used for the operation.
- aggregation_operationAggOp, default=AggOp.Sum
The kind of aggregation operation.
- output_extrema_locationoptional device array type
Device array containing the location of the min/max embeddings. This is required for min/max aggregation only, and can be
None
otherwise. Shape:(graph.n_dst_nodes, dim)
if set.- node_degreeoptional device array type
Device array containing the in-node degree, i.e. the sum of incoming weights. This is required for mean aggregation only, and can be
None
otherwise. Shape:(graph.n_dst_nodes, )
if set.- stream_idint, default=0
CUDA stream pointer as a python int.