Skip to main content
Ctrl+K

cuml 25.08.00 documentation

  • Introduction
  • User Guide
  • Zero Code Change Acceleration
  • API Reference
  • FIL - RAPIDS Forest Inference Library
    • Blogs and other references
  • GitHub
  • Twitter
Home
cuml
cucimcudf-javacudfcugraphcumlcuprojcuspatialcuvscuxfilterdask-cudadask-cudfkvikiolibcudflibcumllibcuprojlibcuspatiallibkvikiolibrmmlibucxxraftrapids-cmakerapidsmpfrmm
stable (25.08)
nightly (25.10)stable (25.08)legacy (25.06)
  • Introduction
  • User Guide
  • Zero Code Change Acceleration
  • API Reference
  • FIL - RAPIDS Forest Inference Library
  • Blogs and other references
  • GitHub
  • Twitter

Section Navigation

  • Training and Evaluating Machine Learning Models
  • Pickling Models for Persistence
  • Supported Versions
  • User Guide

User Guide#

  • Training and Evaluating Machine Learning Models
    • Shared Library Imports
    • Random Forest Classification and Accuracy metrics
    • UMAP and Trustworthiness metrics
    • DBSCAN and Adjusted Random Index
    • Linear regression and R^2 score
  • Pickling Models for Persistence
    • Single GPU Model Pickling
    • Distributed Model Pickling
    • Exporting cuML Random Forest models for inferencing on machines without GPUs
  • Supported Versions
    • Required Runtime Dependencies
    • Optional Runtime Dependencies
    • RAPIDS Dependencies

previous

Introduction

next

Training and Evaluating Machine Learning Models

This Page

  • Show Source

© Copyright 2020-2023, NVIDIA Corporation.

Created using Sphinx 8.2.3.

Built with the PyData Sphinx Theme 0.16.1.