cuSpatial Python User’s Guide#
Contents#
Installing cuSpatial#
Read the RAPIDS Quickstart Guide to learn more about installing all RAPIDS libraries, including cuSpatial.
[ ]:
# !conda create -n rapids-24.10 -c rapidsai -c conda-forge -c nvidia \
# cuspatial=24.10 python=3.9 cudatoolkit=11.5
If you wish to contribute to cuSpatial, you should create a source build using the excellent rapids-compose
GPU accelerated memory layout#
GeoArrow
buffers, a GPU-friendly data format for geometric data that is well[1]:
# Imports used throughout this notebook.
import cuspatial
import cudf
import cupy
import geopandas
import os
import pandas as pd
import numpy as np
from shapely.geometry import *
from shapely import wkt
[2]:
# For deterministic result
np.random.seed(0)
cupy.random.seed(0)
Input / Output#
The primary method of loading features into cuSpatial is using cuspatial.from_geopandas.
__array_interface__
for coordinates and their feature offsets.cuspatial.from_geopandas#
The easiest way to get data into cuSpatial is via cuspatial.from_geopandas
.
[3]:
host_dataframe = geopandas.read_file('https://naturalearth.s3.amazonaws.com/110m_cultural/ne_110m_admin_0_countries.zip')
host_dataframe = host_dataframe.set_crs(4326)
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
print(gpu_dataframe.head())
featurecla scalerank LABELRANK SOVEREIGNT SOV_A3 \
0 Admin-0 country 1 6 Fiji FJI
1 Admin-0 country 1 3 United Republic of Tanzania TZA
2 Admin-0 country 1 7 Western Sahara SAH
3 Admin-0 country 1 2 Canada CAN
4 Admin-0 country 1 2 United States of America US1
ADM0_DIF LEVEL TYPE TLC ADMIN ... \
0 0 2 Sovereign country 1 Fiji ...
1 0 2 Sovereign country 1 United Republic of Tanzania ...
2 0 2 Indeterminate 1 Western Sahara ...
3 0 2 Sovereign country 1 Canada ...
4 1 2 Country 1 United States of America ...
FCLASS_TR FCLASS_ID FCLASS_PL FCLASS_GR FCLASS_IT \
0 None None None None None
1 None None None None None
2 Unrecognized Unrecognized Unrecognized None None
3 None None None None None
4 None None None None None
FCLASS_NL FCLASS_SE FCLASS_BD FCLASS_UA \
0 None None None None
1 None None None None
2 Unrecognized None None None
3 None None None None
4 None None None None
geometry
0 MULTIPOLYGON (((180 -16.06713, 180 -16.55522, ...
1 POLYGON ((33.90371 -0.95, 34.07262 -1.05982, 3...
2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
3 MULTIPOLYGON (((-122.84 49, -122.97421 49.0025...
4 MULTIPOLYGON (((-122.84 49, -120 49, -117.0312...
[5 rows x 169 columns]
(GPU)
Geopandas and cuDF integration#
GeoSeries
is represented internally using GeoArrow
data layout.cuDF
.cuDF
operation on cuSpatial non-feature columns, and most operations will workgeometry
column. Operations that reduce or collate the number of rows in your DataFrame,groupby
, are not supported at this time.[4]:
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
continents_dataframe = gpu_dataframe.sort_values("NAME")
print(continents_dataframe.head())
featurecla scalerank LABELRANK SOVEREIGNT SOV_A3 ADM0_DIF \
103 Admin-0 country 1 3 Afghanistan AFG 0
125 Admin-0 country 1 6 Albania ALB 0
82 Admin-0 country 1 3 Algeria DZA 0
74 Admin-0 country 1 3 Angola AGO 0
159 Admin-0 country 1 4 Antarctica ATA 0
LEVEL TYPE TLC ADMIN ... FCLASS_TR FCLASS_ID \
103 2 Sovereign country 1 Afghanistan ... None None
125 2 Sovereign country 1 Albania ... None None
82 2 Sovereign country 1 Algeria ... None None
74 2 Sovereign country 1 Angola ... None None
159 2 Indeterminate 1 Antarctica ... None None
FCLASS_PL FCLASS_GR FCLASS_IT FCLASS_NL FCLASS_SE FCLASS_BD FCLASS_UA \
103 None None None None None None None
125 None None None None None None None
82 None None None None None None None
74 None None None None None None None
159 None None None None None None None
geometry
103 POLYGON ((66.51861 37.36278, 67.07578 37.35614...
125 POLYGON ((21.02004 40.84273, 20.99999 40.58, 2...
82 POLYGON ((-8.6844 27.39574, -8.66512 27.58948,...
74 MULTIPOLYGON (((12.99552 -4.7811, 12.63161 -4....
159 MULTIPOLYGON (((-48.66062 -78.04702, -48.1514 ...
[5 rows x 169 columns]
(GPU)
cuspatial.GeoDataFrame
and CPU-backedgeopandas.GeoDataFrame
with from_geopandas
and to_geopandas
, enabling you toPolygon
associated with the first item in the dataframe sorted[5]:
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
sorted_dataframe = gpu_dataframe.sort_values("NAME")
sorted_dataframe = sorted_dataframe.to_geopandas()
sorted_dataframe['geometry'].iloc[0]
[5]:
Trajectories#
LineString
coupled with a time sample for each point in the LineString
.cuspatial.trajectory.derive_trajectories
to group trajectory datasets and sort by time.cuspatial.derive_trajectories#
[6]:
# 1m random trajectory samples
ids = cupy.random.randint(1, 400, 1000000)
timestamps = cupy.random.random(1000000)*1000000
xy= cupy.random.random(2000000)
trajs = cuspatial.GeoSeries.from_points_xy(xy)
sorted_trajectories, trajectory_offsets = \
cuspatial.core.trajectory.derive_trajectories(ids, trajs, timestamps)
# sorted_trajectories is a DataFrame containing all trajectory samples
# sorted first by `object_id` and then by `timestamp`.
print(sorted_trajectories.head())
# trajectory_offsets is a Series containing the start position of each
# trajectory in sorted_trajectories.
print(trajectory_offsets)
object_id x y timestamp
0 1 0.680146 0.874341 1970-01-01 00:00:00.125
1 1 0.843522 0.044402 1970-01-01 00:00:00.834
2 1 0.837039 0.351025 1970-01-01 00:00:01.335
3 1 0.946184 0.479038 1970-01-01 00:00:01.791
4 1 0.117322 0.182117 1970-01-01 00:00:02.474
0 0
1 2455
2 4899
3 7422
4 9924
...
394 987408
395 989891
396 992428
397 994975
398 997448
Length: 399, dtype: int32
derive_trajectories
sorts the trajectories by object_id
, then timestamp
, and returns acuspatial.trajectory_distances_and_speeds#
trajectory_distance_and_speed
to calculate the overall distance travelled in meters andderive_trajectories
.[7]:
trajs = cuspatial.GeoSeries.from_points_xy(
sorted_trajectories[["x", "y"]].interleave_columns()
)
d_and_s = cuspatial.core.trajectory.trajectory_distances_and_speeds(
len(cudf.Series(ids).unique()),
sorted_trajectories['object_id'],
trajs,
sorted_trajectories['timestamp']
)
print(d_and_s.head())
distance speed
trajectory_id
0 1.278996e+06 1280.320089
1 1.267179e+06 1268.370390
2 1.294437e+06 1295.905261
3 1.323413e+06 1323.956714
4 1.309590e+06 1311.561012
Bounding#
Compute the bounding boxes of n
polygons or linestrings:
cuspatial.trajectory_bounding_boxes#
trajectory_bounding_boxes
works out of the box with the values returned by derive_trajectories
.[7]:
bounding_boxes = cuspatial.core.trajectory.trajectory_bounding_boxes(
len(cudf.Series(ids, dtype="int32").unique()),
sorted_trajectories['object_id'],
trajs
)
print(bounding_boxes.head())
x_min y_min x_max y_max
0 0.000361 0.000170 0.999582 0.999485
1 0.000184 0.000647 0.999939 0.999884
2 0.000461 0.001395 0.999938 0.999297
3 0.000093 0.000073 0.999819 0.999544
4 0.000105 0.000112 0.999952 0.999013
cuspatial.polygon_bounding_boxes#
polygon_bounding_boxes
supports more complex geometry objects such as Polygon
s with multiplepart_offset
and ring_offset
allows the function to use only the[8]:
single_polygons = cuspatial.from_geopandas(
host_dataframe['geometry'][host_dataframe['geometry'].type == "Polygon"]
)
bounding_box_polygons = cuspatial.core.spatial.bounding.polygon_bounding_boxes(
single_polygons
)
print(bounding_box_polygons.head())
minx miny maxx maxy
0 29.339998 -11.720938 40.316590 -0.950000
1 -17.063423 20.999752 -8.665124 27.656426
2 46.466446 40.662325 87.359970 55.385250
3 55.928917 37.144994 73.055417 45.586804
4 12.182337 -13.257227 31.174149 5.256088
cuspatial.linestring_bounding_boxes#
[9]:
lines = cuspatial.GeoSeries.from_linestrings_xy(
trajs.points.xy, trajectory_offsets, cupy.arange(len(trajectory_offsets))
)
trajectory_bounding_boxes = cuspatial.core.spatial.bounding.linestring_bounding_boxes(
lines, 0.0001
)
print(trajectory_bounding_boxes.head())
minx miny maxx maxy
0 0.000261 0.000070 0.999682 0.999585
1 0.000084 0.000547 1.000039 0.999984
2 0.000361 0.001295 1.000038 0.999397
3 -0.000007 -0.000027 0.999919 0.999644
4 0.000005 0.000012 1.000052 0.999113
Projection#
cuspatial.sinusoidal_projection#
[10]:
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
afghanistan = gpu_dataframe['geometry'][gpu_dataframe['NAME'] == 'Afghanistan']
points = cuspatial.GeoSeries.from_points_xy(afghanistan.polygons.xy)
projected = cuspatial.sinusoidal_projection(
afghanistan.polygons.x.mean(),
afghanistan.polygons.y.mean(),
points
)
print(projected.head())
0 POINT (112.174 -281.59)
1 POINT (62.152 -280.852)
2 POINT (-5.573 -257.391)
3 POINT (-33.071 -243.849)
4 POINT (-98.002 -279.54)
dtype: geometry
Distance#
haversine
and pairwise_linestring
.hausdorff
clustering distances algorithm is also available, computing the hausdorffcuspatial.directed_hausdorff_distance#
[11]:
coordinates = sorted_trajectories[['x', 'y']].interleave_columns()
spaces = cuspatial.GeoSeries.from_multipoints_xy(
coordinates, trajectory_offsets
)
hausdorff_distances = cuspatial.core.spatial.distance.directed_hausdorff_distance(
spaces
)
print(hausdorff_distances.head())
0 1 2 3 4 5 6 \
0 0.000000 0.034755 0.031989 0.031959 0.031873 0.038674 0.029961
1 0.030328 0.000000 0.038672 0.032086 0.031049 0.032170 0.032275
2 0.027640 0.030539 0.000000 0.036737 0.033055 0.043447 0.028812
3 0.031497 0.033380 0.035224 0.000000 0.032581 0.035484 0.030339
4 0.031079 0.032256 0.035731 0.039084 0.000000 0.036416 0.031369
7 8 9 ... 388 389 390 391 \
0 0.029117 0.040962 0.033259 ... 0.031614 0.036447 0.035548 0.028233
1 0.030215 0.034443 0.032998 ... 0.030594 0.035665 0.031473 0.031916
2 0.031807 0.039269 0.033250 ... 0.031998 0.033636 0.034646 0.032615
3 0.034792 0.045755 0.031810 ... 0.033623 0.031359 0.034923 0.032287
4 0.030388 0.033751 0.034029 ... 0.030705 0.040339 0.034328 0.029027
392 393 394 395 396 397
0 0.034176 0.030057 0.033863 0.031111 0.034590 0.033850
1 0.037483 0.033489 0.041403 0.029784 0.035374 0.038179
2 0.036681 0.030642 0.038432 0.032481 0.034810 0.036695
3 0.032808 0.029771 0.040891 0.030802 0.032279 0.038443
4 0.035645 0.027703 0.037529 0.029356 0.031260 0.035501
[5 rows x 398 columns]
cuspatial.haversine_distance#
lon/lat
ordering to better reflect the cartesian coordinates of great circlex/y
.[12]:
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
polygons_first = gpu_dataframe['geometry'][0:10]
polygons_second = gpu_dataframe['geometry'][10:30]
points_first = polygons_first.polygons.xy[0:1000]
points_second = polygons_second.polygons.xy[0:1000]
first = cuspatial.GeoSeries.from_points_xy(points_first)
second = cuspatial.GeoSeries.from_points_xy(points_second)
# The number of coordinates in two sets of polygons vary, so
# we'll just compare the first set of 1000 values here.
distances_in_meters = cuspatial.haversine_distance(
first, second
)
cudf.Series(distances_in_meters).head()
[12]:
0 9959.695143
1 9803.166859
2 9876.857085
3 9925.097106
4 9927.268486
Name: None, dtype: float64
This above method reads the GeoPandas data from CPU memory into GPU memory and then cuSpatial processes it. If the data is already in a cuDF GPU dataframe, you can quickly calculate Haversine distances using the method below. This maximizes speed by keeping all the processing on the GPU and is very useful when working on large datasets.
[13]:
# Generate data to be used to create a cuDF dataframe.
# The data to be processed by Haversine MUST be a Float.
a = {"latitude":[17.1167, 17.1333, 25.333, 25.255, 24.433, 24.262, 35.317, 34.21, 34.566, 31.5, 36.7167, 30.5667, 28.05, 22.8, 35.7297, 36.97, 36.78, 36.8, 36.8, 36.72],
"longitude": [-61.7833, -61.7833, 55.517, 55.364, 54.651, 55.609, 69.017, 62.228, 69.212, 65.85, 3.25, 2.8667, 9.6331, 5.4331, 0.65, 7.79, 3.07, 3.03, 3.04, 4.05]}
df = cudf.DataFrame(data=a)
# Create cuSpatial GeoSeries from cuDF Dataframe
cuGeoSeries = cuspatial.GeoSeries.from_points_xy(df[['longitude', 'latitude']].interleave_columns())
# Create Comparator cuSpatial GeoSeries from a comparator point
df['atlanta_lat'] = 33.7490
df['atlanta_lng'] = -84.3880
atlGeoSeries = cuspatial.GeoSeries.from_points_xy(df[['atlanta_lat', 'atlanta_lng']].interleave_columns())
# Calculate Haversine Distance of cuDF dataframe to comparator point
df['atlanta_dist'] = cuspatial.haversine_distance(cuGeoSeries, atlGeoSeries)
print(df.head())
latitude longitude atlanta_lat atlanta_lng atlanta_dist
0 17.1167 -61.7833 33.749 -84.388 11961.556540
1 17.1333 -61.7833 33.749 -84.388 11963.392729
2 25.3330 55.5170 33.749 -84.388 12243.126130
3 25.2550 55.3640 33.749 -84.388 12233.867463
4 24.4330 54.6510 33.749 -84.388 12139.822218
Pairwise distance#
pairwise_linestring_distance
computes the distance between a GeoSeries
of Linestrings ofn
and a corresponding GeoSeries
of Linestrings of n
length. It returns theThe input accepts a pair of geoseries as input sequences of linestring arrays.
naturalearth_lowres
and treats them as linestrings.cuspatial.pairwise_linestring_distance#
[14]:
gpu_boundaries = cuspatial.from_geopandas(host_dataframe.geometry.boundary)
zeros = cuspatial.pairwise_linestring_distance(
gpu_boundaries[0:50],
gpu_boundaries[0:50]
)
print(zeros.head())
lines1 = gpu_boundaries[0:50]
lines2 = gpu_boundaries[50:100]
distances = cuspatial.pairwise_linestring_distance(
lines1, lines2
)
print(distances.head())
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
dtype: float64
0 152.200610
1 44.076445
2 2.417269
3 44.197151
4 75.821029
dtype: float64
pairwise_point_linestring_distance
computes the distance between pairs of points andcuspatial.pairwise_point_linestring_distance#
Using WGS 84 Pseudo-Mercator, distances are in meters.
[15]:
# Convert input dataframe to Pseudo-Mercator projection.
host_dataframe3857 = host_dataframe.to_crs(3857)
polygons = host_dataframe3857[host_dataframe3857['geometry'].type == "Polygon"]
gpu_polygons = cuspatial.from_geopandas(polygons)
# Extract mean_x and mean_y from each country
mean_x = [gpu_polygons['geometry'].iloc[[ix]].polygons.x.mean() for ix in range(len(gpu_polygons))]
mean_y = [gpu_polygons['geometry'].iloc[[ix]].polygons.y.mean() for ix in range(len(gpu_polygons))]
# Convert mean_x/mean_y values into Points for use in API.
points = cuspatial.GeoSeries([Point(point) for point in zip(mean_x, mean_y)])
# Convert Polygons into Linestrings for use in API.
linestring_df = cuspatial.from_geopandas(geopandas.geoseries.GeoSeries(
[MultiLineString(mapping(polygons['geometry'].iloc[ix])["coordinates"]) for ix in range(len(polygons))]
))
gpu_polygons['border_distance'] = cuspatial.pairwise_point_linestring_distance(
points, linestring_df
)
print(gpu_polygons.head())
featurecla scalerank LABELRANK SOVEREIGNT \
1 Admin-0 country 1 3 United Republic of Tanzania
2 Admin-0 country 1 7 Western Sahara
5 Admin-0 country 1 3 Kazakhstan
6 Admin-0 country 1 3 Uzbekistan
11 Admin-0 country 1 2 Democratic Republic of the Congo
SOV_A3 ADM0_DIF LEVEL TYPE TLC \
1 TZA 0 2 Sovereign country 1
2 SAH 0 2 Indeterminate 1
5 KA1 1 1 Sovereignty 1
6 UZB 0 2 Sovereign country 1
11 COD 0 2 Sovereign country 1
ADMIN ... FCLASS_ID FCLASS_PL \
1 United Republic of Tanzania ... None None
2 Western Sahara ... Unrecognized Unrecognized
5 Kazakhstan ... None None
6 Uzbekistan ... None None
11 Democratic Republic of the Congo ... None None
FCLASS_GR FCLASS_IT FCLASS_NL FCLASS_SE FCLASS_BD FCLASS_UA \
1 None None None None None None
2 None None Unrecognized None None None
5 None None None None None None
6 None None None None None None
11 None None None None None None
geometry border_distance
1 POLYGON ((3774143.866 -105758.362, 3792946.708... 8047.288391
2 POLYGON ((-964649.018 3205725.605, -964597.245... 593137.492497
5 POLYGON ((9724867.413 6311418.173, 9640131.701... 37091.213890
6 POLYGON ((6230350.563 5057973.384, 6225978.591... 278633.467299
11 POLYGON ((3266113.592 -501451.658, 3286149.877... 35812.988244
[5 rows x 170 columns]
(GPU)
cuspatial.pairwise_point_polygon_distance#
Using WGS 84 Pseudo-Mercator, distances are in meters.
[16]:
countries = host_dataframe
cities = geopandas.read_file('https://naturalearth.s3.amazonaws.com/110m_cultural/ne_110m_populated_places_simple.zip')
cities = cities.to_crs(3857)
gpu_cities = cuspatial.from_geopandas(cities)
gpu_countries = cuspatial.from_geopandas(countries)
dist = cuspatial.pairwise_point_polygon_distance(
gpu_cities.geometry[:len(gpu_countries)], gpu_countries.geometry
)
gpu_countries["distance_from"] = cities.name
gpu_countries["distance"] = dist
print(gpu_countries.head())
featurecla scalerank LABELRANK SOVEREIGNT SOV_A3 \
0 Admin-0 country 1 6 Fiji FJI
1 Admin-0 country 1 3 United Republic of Tanzania TZA
2 Admin-0 country 1 7 Western Sahara SAH
3 Admin-0 country 1 2 Canada CAN
4 Admin-0 country 1 2 United States of America US1
ADM0_DIF LEVEL TYPE TLC ADMIN ... \
0 0 2 Sovereign country 1 Fiji ...
1 0 2 Sovereign country 1 United Republic of Tanzania ...
2 0 2 Indeterminate 1 Western Sahara ...
3 0 2 Sovereign country 1 Canada ...
4 1 2 Country 1 United States of America ...
FCLASS_PL FCLASS_GR FCLASS_IT FCLASS_NL FCLASS_SE FCLASS_BD \
0 None None None None None None
1 None None None None None None
2 Unrecognized None None Unrecognized None None
3 None None None None None None
4 None None None None None None
FCLASS_UA geometry distance_from \
0 None MULTIPOLYGON (((180 -16.06713, 180 -16.55522, ... Vatican City
1 None POLYGON ((33.90371 -0.95, 34.07262 -1.05982, 3... San Marino
2 None POLYGON ((-8.66559 27.65643, -8.66512 27.58948... Vaduz
3 None MULTIPOLYGON (((-122.84 49, -122.97421 49.0025... Lobamba
4 None MULTIPOLYGON (((-122.84 49, -120 49, -117.0312... Luxembourg
distance
0 5.329915e+06
1 5.628613e+06
2 6.057264e+06
3 4.626961e+06
4 6.415631e+06
[5 rows x 171 columns]
(GPU)
cuspatial.pairwise_linestring_polygon_distance#
Using WGS 84 Pseudo-Mercator, distances are in meters.
[17]:
# all driveways within 2km range of central park, nyc
if not os.path.exists("./streets_3857.csv"):
import osmnx as ox
graph = ox.graph_from_point((40.769361, -73.977655), dist=2000, network_type="drive")
nodes, streets = ox.graph_to_gdfs(graph)
streets = streets.to_crs(3857)
streets = streets.reset_index(drop=True)
streets.index.name = "index"
streets[["name", "geometry"]].to_csv("streets_3857.csv")
# The data is under notebooks/streets_3857.csv
streets = pd.read_csv("./streets_3857.csv", index_col="index")
streets.geometry = streets.geometry.apply(wkt.loads)
streets = geopandas.GeoDataFrame(streets)
streets.head()
[17]:
name | geometry | |
---|---|---|
index | ||
0 | Columbus Avenue | LINESTRING (-8234860.077 4980333.535, -8234863... |
1 | West 80th Street | LINESTRING (-8235173.854 4980508.442, -8235160... |
2 | Amsterdam Avenue | LINESTRING (-8235173.854 4980508.442, -8235168... |
3 | West 80th Street | LINESTRING (-8235369.475 4980617.398, -8235347... |
4 | Broadway | LINESTRING (-8235369.475 4980617.398, -8235373... |
[19]:
# The polygon of the Empire State Building
if not os.path.exists("./esb_3857.csv"):
import osmnx as ox
esb = ox.features.features_from_place('Empire State Building, New York', tags={"building": True})
esb = esb.to_crs(3857)
esb = esb.geometry.reset_index(drop=True)
esb.index.name = "index"
esb.to_csv("esb_3857.csv")
# The data is under notebooks/esb_3857.csv
esb = pd.read_csv("./esb_3857.csv", index_col="index")
esb.geometry = esb.geometry.apply(wkt.loads)
esb = geopandas.GeoDataFrame(esb)
esb = pd.concat([esb.iloc[0:1]] * len(streets))
esb.head()
/raid/jlamb/miniforge/envs/cuspatial-dev/lib/python3.11/site-packages/osmnx/features.py:294: DeprecationWarning: The 'unary_union' attribute is deprecated, use the 'union_all()' method instead.
polygon = gdf_place["geometry"].unary_union
[19]:
geometry | |
---|---|
index | |
0 | POLYGON ((-8236139.639 4975314.625, -8235990.3... |
0 | POLYGON ((-8236139.639 4975314.625, -8235990.3... |
0 | POLYGON ((-8236139.639 4975314.625, -8235990.3... |
0 | POLYGON ((-8236139.639 4975314.625, -8235990.3... |
0 | POLYGON ((-8236139.639 4975314.625, -8235990.3... |
[20]:
# Straight line distance between the driveways to the Empire State Building
gpu_streets = cuspatial.from_geopandas(streets.geometry)
gpu_esb = cuspatial.from_geopandas(esb.geometry)
dist = cuspatial.pairwise_linestring_polygon_distance(gpu_streets, gpu_esb).rename("dist")
pd.concat([streets["name"].reset_index(drop=True), dist.to_pandas()], axis=1)
[20]:
name | dist | |
---|---|---|
0 | Columbus Avenue | 4993.583717 |
1 | West 80th Street | 5103.472213 |
2 | Amsterdam Avenue | 5208.373183 |
3 | West 80th Street | 5275.851781 |
4 | Broadway | 5178.999774 |
... | ... | ... |
1862 | West 82nd Street | 5411.762092 |
1863 | Broadway | 5476.345847 |
1864 | West 84th Street | 5613.403002 |
1865 | West 75th Street | 4750.092380 |
1866 | Broadway | 4638.894939 |
1867 rows × 2 columns
cuspatial.pairwise_polygon_distance#
Using WGS 84 Pseudo-Mercator, distances are in meters.
[21]:
african_countries = gpu_countries[gpu_countries.CONTINENT == "Africa"].sort_values("POP_EST", ascending=False)
asian_countries = gpu_countries[gpu_countries.CONTINENT == "Asia"].sort_values("POP_EST", ascending=False)
[22]:
# Straight line distance between the top 10 most populated countries in Asia and Africa
population_top10_africa = african_countries[:10].reset_index(drop=True)
population_top10_asia = asian_countries[:10].reset_index(drop=True)
dist = cuspatial.pairwise_polygon_distance(
population_top10_africa.geometry, population_top10_asia.geometry)
cudf.concat([
population_top10_africa["NAME"].rename("Africa"),
population_top10_asia["NAME"].rename("Asia"),
dist.rename("dist")], axis=1
)
[22]:
Africa | Asia | dist | |
---|---|---|---|
0 | Nigeria | China | 64.966620 |
1 | Ethiopia | India | 25.598868 |
2 | Egypt | Indonesia | 60.717434 |
3 | Dem. Rep. Congo | Pakistan | 37.489668 |
4 | South Africa | Bangladesh | 72.860545 |
5 | Tanzania | Japan | 97.872886 |
6 | Kenya | Philippines | 75.450451 |
7 | Uganda | Vietnam | 69.827567 |
8 | Algeria | Turkey | 17.927419 |
9 | Sudan | Iran | 13.990335 |
Filtering#
The filtering module contains points_in_spatial_window
, which returns from a set of points only those points that fall within a spatial window defined by four bounding coordinates: min_x
, max_x
, min_y
, and max_y
. The following example finds only the points of polygons that fall within 1 standard deviation of the mean of all of the polygons.
cuspatial.points_in_spatial_window#
[23]:
gpu_dataframe = cuspatial.from_geopandas(host_dataframe)
geometry = gpu_dataframe['geometry']
points = cuspatial.GeoSeries.from_points_xy(geometry.polygons.xy)
mean_x, std_x = (geometry.polygons.x.mean(), geometry.polygons.x.std())
mean_y, std_y = (geometry.polygons.y.mean(), geometry.polygons.y.std())
avg_points = cuspatial.points_in_spatial_window(
points,
mean_x - std_x,
mean_x + std_x,
mean_y - std_y,
mean_y + std_y
)
print(avg_points.head())
0 POINT (33.90371 -0.95)
1 POINT (34.07262 -1.05982)
2 POINT (37.69869 -3.09699)
3 POINT (37.7669 -3.67712)
4 POINT (39.20222 -4.67677)
dtype: geometry
With some careful grouping, one can reconstruct the original complete polygons that fall within the range.
Set Operations#
Linestring Intersections#
cuSpatial provides a linestring-linestring intersection algorithm to compute the overlapping geometries between two linestrings. The API also returns the ids for each returned geometry to help user to trace back the source geometry.
[24]:
from cuspatial.core.binops.intersection import pairwise_linestring_intersection
usa_boundary = cuspatial.from_geopandas(host_dataframe[host_dataframe.NAME == "United States of America"].geometry.boundary)
canada_boundary = cuspatial.from_geopandas(host_dataframe[host_dataframe.NAME == "Canada"].geometry.boundary)
list_offsets, geometries, look_back_ids = pairwise_linestring_intersection(usa_boundary, canada_boundary)
[25]:
# The first integer series shows that the result contains 1 row (since we only have 1 pair of linestrings as input).
# This row contains 144 geometires.
list_offsets
[25]:
<cudf.core.column.numerical.NumericalColumn object at 0x7f525c27a570>
[
0,
142
]
dtype: int32
[31]:
# The second element is a geoseries that contains the intersecting geometries, with 144 rows, including points and linestrings.
geometries
[31]:
0 POINT (-130.53611 54.80275)
1 POINT (-130.53611 54.80278)
2 POINT (-130.53611 54.80275)
3 POINT (-129.98 55.285)
4 POINT (-130.53611 54.80278)
...
137 LINESTRING (-120 49, -117.03121 49)
138 LINESTRING (-122.84 49, -120 49)
139 LINESTRING (-117.03121 49, -107.05 49)
140 LINESTRING (-83.89077 46.11693, -83.61613 46.1...
141 LINESTRING (-82.69009 41.67511, -82.43928 41.6...
Length: 142, dtype: geometry
[26]:
# The third element is a dataframe that contains IDs to the input segments and linestrings, 4 for each result row.
# Each represents ids to lhs, rhs linestring and segment ids.
look_back_ids
[26]:
lhs_linestring_id | lhs_segment_id | rhs_linestring_id | rhs_segment_id | |
---|---|---|---|---|
0 | [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ... | [18, 16, 18, 15, 17, 137, 14, 16, 13, 15, 14, ... | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | [9, 10, 10, 11, 11, 28, 12, 12, 13, 13, 14, 15... |
Spatial Joins#
cuSpatial provides a number of functions to facilitate high-performance spatial joins, including unindexed and quadtree-indexed point-in-polygon and quadtree-indexed point to nearest linestring.
The API for spatial joins does not yet match GeoPandas, but with knowledge of cuSpatial data formats you can call cuspatial.point_in_polygon
for large numbers of points on 32 polygons or less, or call cuspatial.quadtree_point_in_polygon
for large numbers of points and polygons.
Unindexed Point-in-polygon Join#
cuspatial.point_in_polygon#
[27]:
single_polygons = host_dataframe[host_dataframe['geometry'].type == "Polygon"]
gpu_dataframe = cuspatial.from_geopandas(single_polygons)
x_points = (cupy.random.random(10000000) - 0.5) * 360
y_points = (cupy.random.random(10000000) - 0.5) * 180
xy = cudf.DataFrame({"x": x_points, "y": y_points}).interleave_columns()
points = cuspatial.GeoSeries.from_points_xy(xy)
short_dataframe = gpu_dataframe.iloc[0:31]
geometry = short_dataframe['geometry']
points_in_polygon = cuspatial.point_in_polygon(
points, geometry
)
sum_of_points_in_polygons_0_to_31 = points_in_polygon.sum()
sum_of_points_in_polygons_0_to_31.head()
[27]:
1 11896
2 1268
5 50835
6 7792
11 29318
dtype: int64
quadtree_point_in_polygon
that uses an indexingquadtree_point_in_polygon
also supports a number ofQuadtree Indexing#
The indexing module is used to create a spatial quadtree. Use
cuspatial.quadtree_on_points(
points,
x_min,
x_max,
y_min,
y_max,
scale,
max_depth,
max_size
)
quadtree_point_in_polygon
join
module.scale
: A scaling function that increases the size of the point space from an{x_min, y_min}
. This can increase the likelihood of generatingmax_depth
: In order for a quadtree to index points effectively, it must have a depth that is log-scaled with the size of the number of points. Each level of themax_depth
parameter. With an input size10m
points and max_depth = 7
, \(\frac{10^6}{4^7}\) points will be mostmax_size
: The maximum number of points allowed in an internal node before it is split into four leaf notes. As the quadtree is generated, a leaf node containing usable index points will be created as points are added. If the number of points in this leaf exceeds max_size
, the leaf will be subdivided, with four new leaves added and the original node removed from the set of leaves. This number is probably optimized in most datasets by making it a significant fraction of the optimal leaf
size computation from above. Consider \(10,000,000 / 4^7 / 4 = 153\).
cuspatial.quadtree_on_points#
[28]:
x_points = (cupy.random.random(10000000) - 0.5) * 360
y_points = (cupy.random.random(10000000) - 0.5) * 180
xy = cudf.DataFrame({"x": x_points, "y": y_points}).interleave_columns()
points = cuspatial.GeoSeries.from_points_xy(xy)
scale = 5
max_depth = 7
max_size = 125
point_indices, quadtree = cuspatial.quadtree_on_points(points,
x_points.min(),
x_points.max(),
y_points.min(),
y_points.max(),
scale,
max_depth,
max_size)
print(point_indices.head())
print(quadtree.head())
0 1507
1 1726
2 4242
3 7371
4 11341
dtype: uint32
key level is_internal_node length offset
0 0 0 True 4 2
1 1 0 True 2 6
2 0 1 True 4 8
3 1 1 True 4 12
4 2 1 True 2 16
Indexed Spatial Joins#
The quadtree spatial index (point_indices
and quadtree
) is used by quadtree_point_in_polygon
and quadtree_point_to_nearest_linestring
to accelerate larger spatial joins. quadtree_point_in_polygon
depends on a number of intermediate products calculated here using the following functions.
cuspatial.join_quadtree_and_bounding_boxes#
cuspatial.quadtree_point_in_polygon#
[29]:
polygons = gpu_dataframe['geometry']
poly_bboxes = cuspatial.polygon_bounding_boxes(
polygons
)
intersections = cuspatial.join_quadtree_and_bounding_boxes(
quadtree,
poly_bboxes,
polygons.polygons.x.min(),
polygons.polygons.x.max(),
polygons.polygons.y.min(),
polygons.polygons.y.max(),
scale,
max_depth
)
polygons_and_points = cuspatial.quadtree_point_in_polygon(
intersections,
quadtree,
point_indices,
points,
polygons
)
print(polygons_and_points.head())
Empty DataFrame
Columns: [polygon_index, point_index]
Index: []
cuspatial.quadtree_point_to_nearest_linestring#
cuspatial.quadtree_point_to_nearest_linestring
can be used to find the Polygon or Linestring[30]:
gpu_countries = cuspatial.from_geopandas(countries[countries['geometry'].type == "Polygon"])
gpu_cities = cuspatial.from_geopandas(cities[cities['geometry'].type == 'Point'])
[31]:
polygons = gpu_countries['geometry'].polygons
boundaries = cuspatial.GeoSeries.from_linestrings_xy(
cudf.DataFrame({"x": polygons.x, "y": polygons.y}).interleave_columns(),
polygons.ring_offset,
cupy.arange(len(polygons.ring_offset))
)
point_indices, quadtree = cuspatial.quadtree_on_points(gpu_cities['geometry'],
polygons.x.min(),
polygons.x.max(),
polygons.y.min(),
polygons.y.max(),
scale,
max_depth,
max_size)
poly_bboxes = cuspatial.linestring_bounding_boxes(
boundaries,
2.0
)
intersections = cuspatial.join_quadtree_and_bounding_boxes(
quadtree,
poly_bboxes,
polygons.x.min(),
polygons.x.max(),
polygons.y.min(),
polygons.y.max(),
scale,
max_depth
)
result = cuspatial.quadtree_point_to_nearest_linestring(
intersections,
quadtree,
point_indices,
gpu_cities['geometry'],
boundaries
)
print(result.head())
Empty DataFrame
Columns: [point_index, linestring_index, distance]
Index: []
Images used with permission from Wikipedia Creative Commons
[ ]: