IVF-Flat#
The IVF-Flat method is an ANN algorithm. It uses an inverted file index (IVF) with unmodified (that is, flat) vectors. This algorithm provides simple knobs to reduce the overall search space and to trade-off accuracy for speed.
#include <cuvs/neighbors/ivf_flat.hpp>
namespace cuvs::neighbors::ivf_flat
Index build parameters#
-
static uint32_t kIndexGroupSize = 32#
Size of the interleaved group (see
index::data
description).
-
struct index_params : public cuvs::neighbors::index_params#
- #include <ivf_flat.hpp>
Public Members
-
uint32_t n_lists = 1024#
The number of inverted lists (clusters)
-
uint32_t kmeans_n_iters = 20#
The number of iterations searching for kmeans centers (index building).
-
double kmeans_trainset_fraction = 0.5#
The fraction of data to use during iterative kmeans building.
-
bool adaptive_centers = false#
By default (adaptive_centers = false), the cluster centers are trained in
ivf_flat::build
, and never modified inivf_flat::extend
. As a result, you may need to retrain the index from scratch after invoking (ivf_flat::extend
) a few times with new data, the distribution of which is no longer representative of the original training set.The alternative behavior (adaptive_centers = true) is to update the cluster centers for new data when it is added. In this case,
index.centers()
are always exactly the centroids of the data in the corresponding clusters. The drawback of this behavior is that the centroids depend on the order of adding new data (through the classification of the added data); that is,index.centers()
“drift” together with the changing distribution of the newly added data.
-
bool conservative_memory_allocation = false#
By default, the algorithm allocates more space than necessary for individual clusters (
list_data
). This allows to amortize the cost of memory allocation and reduce the number of data copies during repeated calls toextend
(extending the database).The alternative is the conservative allocation behavior; when enabled, the algorithm always allocates the minimum amount of memory required to store the given number of records. Set this flag to
true
if you prefer to use as little GPU memory for the database as possible.
-
bool add_data_on_build = true#
Whether to add the dataset content to the index, i.e.:
true
means the index is filled with the dataset vectors and ready to search after callingbuild
.false
meansbuild
only trains the underlying model (e.g. quantizer or clustering), but the index is left empty; you’d need to callextend
on the index afterwards to populate it.
-
uint32_t n_lists = 1024#
Index search parameters#
-
template<typename ValueT, typename IdxT, typename SizeT = uint32_t>
using list_data = ivf::list<list_spec, SizeT, ValueT, IdxT>#
-
struct search_params : public cuvs::neighbors::search_params#
- #include <ivf_flat.hpp>
Public Members
-
uint32_t n_probes = 20#
The number of clusters to search.
-
uint32_t n_probes = 20#
-
template<typename SizeT, typename ValueT, typename IdxT>
struct list_spec# - #include <ivf_flat.hpp>
Index#
-
template<typename T, typename IdxT>
struct index : public cuvs::neighbors::index# - #include <ivf_flat.hpp>
IVF-flat index.
- Template Parameters:
T – data element type
IdxT – type of the indices in the source dataset
Public Functions
-
index(raft::resources const &res)#
Construct an empty index.
Constructs an empty index. This index will either need to be trained with
build
or loaded from a saved copy withdeserialize
-
index(raft::resources const &res, const index_params ¶ms, uint32_t dim)#
Construct an empty index. It needs to be trained and then populated.
-
index(raft::resources const &res, cuvs::distance::DistanceType metric, uint32_t n_lists, bool adaptive_centers, bool conservative_memory_allocation, uint32_t dim)#
Construct an empty index. It needs to be trained and then populated.
-
uint32_t veclen() const noexcept#
Vectorized load/store size in elements, determines the size of interleaved data chunks.
-
cuvs::distance::DistanceType metric() const noexcept#
Distance metric used for clustering.
-
bool adaptive_centers() const noexcept#
Whether
centers()
change upon extending the index (ivf_flat::extend).
-
raft::device_vector_view<uint32_t, uint32_t> list_sizes() noexcept#
Inverted list data [size, dim].
The data consists of the dataset rows, grouped by their labels (into clusters/lists). Within each list (cluster), the data is grouped into blocks of
kIndexGroupSize
interleaved vectors. Note, the total index length is slightly larger than the source dataset length, because each cluster is padded bykIndexGroupSize
elements.Interleaving pattern: within groups of
kIndexGroupSize
rows, the data is interleaved with the block size equal toveclen * sizeof(T)
. That is, a chunk ofveclen
consecutive components of one row is followed by a chunk of the same size of the next row, and so on.Example: veclen = 2, dim = 6, kIndexGroupSize = 32, list_size = 31
Sizes of the lists (clusters) [n_lists] NB: This may differ from the actual list size if the shared lists have been extended by another indexx[ 0, 0], x[ 0, 1], x[ 1, 0], x[ 1, 1], ... x[14, 0], x[14, 1], x[15, 0], x[15, 1], x[16, 0], x[16, 1], x[17, 0], x[17, 1], ... x[30, 0], x[30, 1], - , - , x[ 0, 2], x[ 0, 3], x[ 1, 2], x[ 1, 3], ... x[14, 2], x[14, 3], x[15, 2], x[15, 3], x[16, 2], x[16, 3], x[17, 2], x[17, 3], ... x[30, 2], x[30, 3], - , - , x[ 0, 4], x[ 0, 5], x[ 1, 4], x[ 1, 5], ... x[14, 4], x[14, 5], x[15, 4], x[15, 5], x[16, 4], x[16, 5], x[17, 4], x[17, 5], ... x[30, 4], x[30, 5], - , - ,
-
raft::device_matrix_view<float, uint32_t, raft::row_major> centers() noexcept#
k-means cluster centers corresponding to the lists [n_lists, dim]
-
std::optional<raft::device_vector_view<float, uint32_t>> center_norms() noexcept#
(Optional) Precomputed norms of the
centers
w.r.t. the chosen distance metric [n_lists].NB: this may be empty if the index is empty or if the metric does not require the center norms calculation.
-
raft::host_vector_view<IdxT, uint32_t> accum_sorted_sizes() noexcept#
Accumulated list sizes, sorted in descending order [n_lists + 1]. The last value contains the total length of the index. The value at index zero is always zero.
That is, the content of this span is as if the
list_sizes
was sorted and then accumulated.This span is used during search to estimate the maximum size of the workspace.
-
uint32_t dim() const noexcept#
Dimensionality of the data.
-
uint32_t n_lists() const noexcept#
Number of clusters/inverted lists.
-
raft::device_vector_view<IdxT*, uint32_t> inds_ptrs() noexcept#
Pointers to the inverted lists (clusters) indices [n_lists].
-
bool conservative_memory_allocation() const noexcept#
Whether to use convervative memory allocation when extending the list (cluster) data (see index_params.conservative_memory_allocation).
Index build#
-
cuvs::neighbors::ivf_flat::index<float, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const float, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] a device pointer to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const float, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<float, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::device_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
-
cuvs::neighbors::ivf_flat::index<int8_t, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const int8_t, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] a device pointer to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const int8_t, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::device_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
-
cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const uint8_t, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] a device pointer to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::device_matrix_view<const uint8_t, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::device_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
-
cuvs::neighbors::ivf_flat::index<float, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const float, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::host_matrix_view to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const float, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<float, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::host_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
-
cuvs::neighbors::ivf_flat::index<int8_t, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const int8_t, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] a host pointer to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const int8_t, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::host_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
-
cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const uint8_t, int64_t, raft::row_major> dataset)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset auto index = ivf_flat::build(handle, dataset, index_params);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] a host pointer to a row-major matrix [n_rows, dim]
- Returns:
the constructed ivf-flat index
-
void build(raft::resources const &handle, const cuvs::neighbors::ivf_flat::index_params &index_params, raft::host_matrix_view<const uint8_t, int64_t, raft::row_major> dataset, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &idx)#
Build the index from the dataset for efficient search.
NB: Currently, the following distance metrics are supported:
L2Expanded
L2Unexpanded
InnerProduct
CosineExpanded
Note, if index_params.add_data_on_build is set to true, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; // use default index parameters ivf_flat::index_params index_params; // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping. This is only applicable if index_params.add_data_on_build is set to true raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // create and fill the index from a [N, D] dataset ivf_flat::index<decltype(dataset::value_type), decltype(dataset::index_type)> index; ivf_flat::build(handle, dataset, index_params, index);
- Parameters:
handle – [in]
index_params – configure the index building
dataset – [in] raft::host_matrix_view to a row-major matrix [n_rows, dim]
idx – [out] reference to ivf_flat::index
Index extend#
-
cuvs::neighbors::ivf_flat::index<float, int64_t> extend(raft::resources const &handle, raft::device_matrix_view<const float, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<float, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::device_matrix_view<const float, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<float, int64_t> *idx)#
Extend the index in-place with the new data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [inout] pointer to index, to be overwritten in-place
-
cuvs::neighbors::ivf_flat::index<int8_t, int64_t> extend(raft::resources const &handle, raft::device_matrix_view<const int8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, dataset, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::device_matrix_view<const int8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> *idx)#
Extend the index in-place with the new data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows].
idx – [inout] pointer to index, to be overwritten in-place
-
cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> extend(raft::resources const &handle, raft::device_matrix_view<const uint8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, dataset, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::device_matrix_view<const uint8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::device_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> *idx)#
Extend the index in-place with the new data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // fill the index with the data std::optional<raft::device_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::device_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::device_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [inout] pointer to index, to be overwritten in-place
-
cuvs::neighbors::ivf_flat::index<float, int64_t> extend(raft::resources const &handle, raft::host_matrix_view<const float, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<float, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::host_matrix_view<const float, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<float, int64_t> *idx)#
Extend the index in-place with the new data.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [inout] pointer to index, to be overwritten in-place
-
cuvs::neighbors::ivf_flat::index<int8_t, int64_t> extend(raft::resources const &handle, raft::host_matrix_view<const int8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, dataset, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::host_matrix_view<const int8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> *idx)#
Extend the index in-place with the new data.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [inout] pointer to index, to be overwritten in-place
-
cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> extend(raft::resources const &handle, raft::host_matrix_view<const uint8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, const cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &idx)#
Build a new index containing the data of the original plus new extra vectors.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Implementation note: The new data is clustered according to existing kmeans clusters, then the cluster centers are adjusted to match the newly labeled data.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, dataset, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; auto index = ivf_flat::extend(handle, new_vectors, no_op, index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [in] original index
- Returns:
the constructed extended ivf-flat index
-
void extend(raft::resources const &handle, raft::host_matrix_view<const uint8_t, int64_t, raft::row_major> new_vectors, std::optional<raft::host_vector_view<const int64_t, int64_t>> new_indices, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> *idx)#
Extend the index in-place with the new data.
Note, the user can set a stream pool in the input raft::resource with at least one stream to enable kernel and copy overlapping.
Usage example:
using namespace cuvs::neighbors; ivf_flat::index_params index_params; index_params.add_data_on_build = false; // don't populate index on build index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training // train the index from a [N, D] dataset auto index_empty = ivf_flat::build(handle, index_params, dataset); // optional: create a stream pool with at least one stream to enable kernel and copy // overlapping raft::resource::set_cuda_stream_pool(handle, std::make_shared<rmm::cuda_stream_pool>(1)); // fill the index with the data std::optional<raft::host_vector_view<const IdxT, IdxT>> no_op = std::nullopt; ivf_flat::extend(handle, dataset, no_opt, &index_empty);
- Parameters:
handle – [in]
new_vectors – [in] raft::host_matrix_view to a row-major matrix [n_rows, index.dim()]
new_indices – [in] optional raft::host_vector_view to a vector of indices [n_rows]. If the original index is empty (
orig_index.size() == 0
), you can passstd::nullopt
here to imply a continuous range[0...n_rows)
.idx – [inout] pointer to index, to be overwritten in-place
Index search#
-
void search(raft::resources const &handle, const cuvs::neighbors::ivf_flat::search_params ¶ms, const cuvs::neighbors::ivf_flat::index<float, int64_t> &index, raft::device_matrix_view<const float, int64_t, raft::row_major> queries, raft::device_matrix_view<int64_t, int64_t, raft::row_major> neighbors, raft::device_matrix_view<float, int64_t, raft::row_major> distances, const cuvs::neighbors::filtering::base_filter &sample_filter = cuvs::neighbors::filtering::none_sample_filter{})#
Search ANN using the constructed index.
See the ivf_flat::build documentation for a usage example.
Note, this function requires a temporary buffer to store intermediate results between cuda kernel calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can pass a pool memory resource or a large enough pre-allocated memory resource to reduce or eliminate entirely allocations happening within
search
:... // use default search parameters ivf_flat::search_params search_params; // Use the same allocator across multiple searches to reduce the number of // cuda memory allocations ivf_flat::search(handle, search_params, index, queries1, out_inds1, out_dists1); ivf_flat::search(handle, search_params, index, queries2, out_inds2, out_dists2); ivf_flat::search(handle, search_params, index, queries3, out_inds3, out_dists3); ...
- Parameters:
handle – [in]
params – [in] configure the search
index – [in] ivf-flat constructed index
queries – [in] raft::device_matrix_view to a row-major matrix [n_queries, index->dim()]
neighbors – [out] raft::device_matrix_view to the indices of the neighbors in the source dataset [n_queries, k]
distances – [out] raft::device_matrix_view to the distances to the selected neighbors [n_queries, k]
sample_filter – [in] an optional device filter function object that greenlights samples for a given query. (none_sample_filter for no filtering)
-
void search(raft::resources const &handle, const cuvs::neighbors::ivf_flat::search_params ¶ms, const cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &index, raft::device_matrix_view<const int8_t, int64_t, raft::row_major> queries, raft::device_matrix_view<int64_t, int64_t, raft::row_major> neighbors, raft::device_matrix_view<float, int64_t, raft::row_major> distances, const cuvs::neighbors::filtering::base_filter &sample_filter = cuvs::neighbors::filtering::none_sample_filter{})#
Search ANN using the constructed index.
See the ivf_flat::build documentation for a usage example.
Note, this function requires a temporary buffer to store intermediate results between cuda kernel calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can pass a pool memory resource or a large enough pre-allocated memory resource to reduce or eliminate entirely allocations happening within
search
:... // use default search parameters ivf_flat::search_params search_params; // Use the same allocator across multiple searches to reduce the number of // cuda memory allocations ivf_flat::search(handle, search_params, index, queries1, out_inds1, out_dists1); ivf_flat::search(handle, search_params, index, queries2, out_inds2, out_dists2); ivf_flat::search(handle, search_params, index, queries3, out_inds3, out_dists3); ...
- Parameters:
handle – [in]
params – [in] configure the search
index – [in] ivf-flat constructed index
queries – [in] raft::device_matrix_view to a row-major matrix [n_queries, index->dim()]
neighbors – [out] raft::device_matrix_view to the indices of the neighbors in the source dataset [n_queries, k]
distances – [out] raft::device_matrix_view to the distances to the selected neighbors [n_queries, k]
sample_filter – [in] an optional device filter function object that greenlights samples for a given query. (none_sample_filter for no filtering)
-
void search(raft::resources const &handle, const cuvs::neighbors::ivf_flat::search_params ¶ms, const cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &index, raft::device_matrix_view<const uint8_t, int64_t, raft::row_major> queries, raft::device_matrix_view<int64_t, int64_t, raft::row_major> neighbors, raft::device_matrix_view<float, int64_t, raft::row_major> distances, const cuvs::neighbors::filtering::base_filter &sample_filter = cuvs::neighbors::filtering::none_sample_filter{})#
Search ANN using the constructed index.
See the ivf_flat::build documentation for a usage example.
Note, this function requires a temporary buffer to store intermediate results between cuda kernel calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can pass a pool memory resource or a large enough pre-allocated memory resource to reduce or eliminate entirely allocations happening within
search
:... // use default search parameters ivf_flat::search_params search_params; // Use the same allocator across multiple searches to reduce the number of // cuda memory allocations ivf_flat::search(handle, search_params, index, queries1, out_inds1, out_dists1); ivf_flat::search(handle, search_params, index, queries2, out_inds2, out_dists2); ivf_flat::search(handle, search_params, index, queries3, out_inds3, out_dists3); ...
- Parameters:
handle – [in]
params – [in] configure the search
index – [in] ivf-flat constructed index
queries – [in] raft::device_matrix_view to a row-major matrix [n_queries, index->dim()]
neighbors – [out] raft::device_matrix_view to the indices of the neighbors in the source dataset [n_queries, k]
distances – [out] raft::device_matrix_view to the distances to the selected neighbors [n_queries, k]
sample_filter – [in] an optional device filter function object that greenlights samples for a given query. (none_sample_filter for no filtering)
Index serialize#
-
void serialize(raft::resources const &handle, const std::string &filename, const cuvs::neighbors::ivf_flat::index<float, int64_t> &index)#
Save the index to file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, filename, index);
- Parameters:
handle – [in] the raft handle
filename – [in] the file name for saving the index
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, const std::string &filename, cuvs::neighbors::ivf_flat::index<float, int64_t> *index)#
Load index from file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with `ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, filename, &index);
- Parameters:
handle – [in] the raft handle
filename – [in] the name of the file that stores the index
index – [in] IVF-Flat index
-
void serialize(raft::resources const &handle, std::ostream &os, const cuvs::neighbors::ivf_flat::index<float, int64_t> &index)#
Write the index to an output stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an output stream std::ostream os(std::cout.rdbuf()); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, os, index);
- Parameters:
handle – [in] the raft handle
os – [in] output stream
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, std::istream &is, cuvs::neighbors::ivf_flat::index<float, int64_t> *index)#
Load index from input stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an input stream std::istream is(std::cin.rdbuf()); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with `ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, is, &index);
- Parameters:
handle – [in] the raft handle
is – [in] input stream
index – [in] IVF-Flat index
-
void serialize(raft::resources const &handle, const std::string &filename, const cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &index)#
Save the index to file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, filename, index);
- Parameters:
handle – [in] the raft handle
filename – [in] the file name for saving the index
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, const std::string &filename, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> *index)#
Load index from file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with `ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, filename, &index);
- Parameters:
handle – [in] the raft handle
filename – [in] the name of the file that stores the index
index – [in] IVF-Flat index
-
void serialize(raft::resources const &handle, std::ostream &os, const cuvs::neighbors::ivf_flat::index<int8_t, int64_t> &index)#
Write the index to an output stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an output stream std::ostream os(std::cout.rdbuf()); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, os, index);
- Parameters:
handle – [in] the raft handle
os – [in] output stream
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, std::istream &is, cuvs::neighbors::ivf_flat::index<int8_t, int64_t> *index)#
Load index from input stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an input stream std::istream is(std::cin.rdbuf()); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with `ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, is, &index);
- Parameters:
handle – [in] the raft handle
is – [in] input stream
index – [in] IVF-Flat index
-
void serialize(raft::resources const &handle, const std::string &filename, const cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &index)#
Save the index to file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, filename, index);
- Parameters:
handle – [in] the raft handle
filename – [in] the file name for saving the index
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, const std::string &filename, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> *index)#
Load index from file.
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create a string with a filepath std::string filename("/path/to/index"); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, filename, &index);
- Parameters:
handle – [in] the raft handle
filename – [in] the name of the file that stores the index
index – [in] IVF-Flat index
-
void serialize(raft::resources const &handle, std::ostream &os, const cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> &index)#
Write the index to an output stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an output stream std::ostream os(std::cout.rdbuf()); // create an index with `auto index = ivf_flat::build(...);` cuvs::neighbors::ivf_flat::serialize(handle, os, index);
- Parameters:
handle – [in] the raft handle
os – [in] output stream
index – [in] IVF-Flat index
-
void deserialize(raft::resources const &handle, std::istream &is, cuvs::neighbors::ivf_flat::index<uint8_t, int64_t> *index)#
Load index from input stream
Experimental, both the API and the serialization format are subject to change.
#include <raft/core/resources.hpp> #include <cuvs/neighbors/ivf_flat.hpp> raft::resources handle; // create an input stream std::istream is(std::cin.rdbuf()); using T = float; // data element type using IdxT = int64_t; // type of the index // create an empty index with `ivf_flat::index<T, IdxT> index(handle, index_params, dim);` cuvs::neighbors::ivf_flat::deserialize(handle, is, &index);
- Parameters:
handle – [in] the raft handle
is – [in] input stream
index – [in] IVF-Flat index