Quantize#
This page provides C++ class references for the publicly-exposed elements of the
cuvs/preprocessing/quantize
package.
Scalar#
#include <cuvs/preprocessing/quantize/scalar.hpp>
namespace cuvs::preprocessing::quantize::scalar
- group scalar
Functions
-
quantizer<double> train(raft::resources const &res, const params params, raft::device_matrix_view<const double, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<double, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on device
- Returns:
quantizer
-
quantizer<double> train(raft::resources const &res, const params params, raft::host_matrix_view<const double, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<double, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on host
- Returns:
quantizer
-
void transform(raft::resources const &res, const quantizer<double> &quantizer, raft::device_matrix_view<const double, int64_t> dataset, raft::device_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<double, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void transform(raft::resources const &res, const quantizer<double> &quantizer, raft::host_matrix_view<const double, int64_t> dataset, raft::host_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<double, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
void inverse_transform(raft::resources const &res, const quantizer<double> &quantizer, raft::device_matrix_view<const int8_t, int64_t> dataset, raft::device_matrix_view<double, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_device_matrix<double, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void inverse_transform(raft::resources const &res, const quantizer<double> &quantizer, raft::host_matrix_view<const int8_t, int64_t> dataset, raft::host_matrix_view<double, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_host_matrix<double, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
quantizer<float> train(raft::resources const &res, const params params, raft::device_matrix_view<const float, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<float, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on device
- Returns:
quantizer
-
quantizer<float> train(raft::resources const &res, const params params, raft::host_matrix_view<const float, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<float, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on host
- Returns:
quantizer
-
void transform(raft::resources const &res, const quantizer<float> &quantizer, raft::device_matrix_view<const float, int64_t> dataset, raft::device_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<float, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void transform(raft::resources const &res, const quantizer<float> &quantizer, raft::host_matrix_view<const float, int64_t> dataset, raft::host_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<float, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
void inverse_transform(raft::resources const &res, const quantizer<float> &quantizer, raft::device_matrix_view<const int8_t, int64_t> dataset, raft::device_matrix_view<float, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_device_matrix<float, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void inverse_transform(raft::resources const &res, const quantizer<float> &quantizer, raft::host_matrix_view<const int8_t, int64_t> dataset, raft::host_matrix_view<float, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_host_matrix<float, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
quantizer<half> train(raft::resources const &res, const params params, raft::device_matrix_view<const half, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<half, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on device
- Returns:
quantizer
-
quantizer<half> train(raft::resources const &res, const params params, raft::host_matrix_view<const half, int64_t> dataset)#
Initializes a scalar quantizer to be used later for quantizing the dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<half, int8_t>(handle, params, dataset);
- Parameters:
res – [in] raft resource
params – [in] configure scalar quantizer, e.g. quantile
dataset – [in] a row-major matrix view on host
- Returns:
quantizer
-
void transform(raft::resources const &res, const quantizer<half> &quantizer, raft::device_matrix_view<const half, int64_t> dataset, raft::device_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<half, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void transform(raft::resources const &res, const quantizer<half> &quantizer, raft::host_matrix_view<const half, int64_t> dataset, raft::host_matrix_view<int8_t, int64_t> out)#
Applies quantization transform to given dataset.
Usage example:
raft::handle_t handle; cuvs::preprocessing::quantize::scalar::params params; auto quantizer = cuvs::preprocessing::quantize::scalar::train<half, int8_t>(handle, params, dataset); auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
void inverse_transform(raft::resources const &res, const quantizer<half> &quantizer, raft::device_matrix_view<const int8_t, int64_t> dataset, raft::device_matrix_view<half, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_device_matrix<int8_t, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_device_matrix<half, int64_t>(handle, samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on device
out – [out] a row-major matrix view on device
-
void inverse_transform(raft::resources const &res, const quantizer<half> &quantizer, raft::host_matrix_view<const int8_t, int64_t> dataset, raft::host_matrix_view<half, int64_t> out)#
Perform inverse quantization step on previously quantized dataset.
Note that depending on the chosen data types train dataset the conversion is not lossless.
Usage example:
auto quantized_dataset = raft::make_host_matrix<int8_t, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::transform(handle, quantizer, dataset, quantized_dataset.view()); auto dataset_revert = raft::make_host_matrix<half, int64_t>(samples, features); cuvs::preprocessing::quantize::scalar::inverse_transform(handle, quantizer, dataset_revert.view());
- Parameters:
res – [in] raft resource
quantizer – [in] a scalar quantizer
dataset – [in] a row-major matrix view on host
out – [out] a row-major matrix view on host
-
struct params#
- #include <scalar.hpp>
quantizer parameters.
-
template<typename T>
struct quantizer# - #include <scalar.hpp>
Defines and stores scalar for quantisation upon training.
The quantization is performed by a linear mapping of an interval in the float data type to the full range of the quantized int type.
- Template Parameters:
T – data element type
-
quantizer<double> train(raft::resources const &res, const params params, raft::device_matrix_view<const double, int64_t> dataset)#