Datashader Charts¶
line chart¶
- datashader.line(y, data_points=100, add_interaction=True, pixel_shade_type='linear', color=None, step_size=None, step_size_type=<class 'int'>, width=800, height=400, title='', timeout=100, unselected_alpha=0.2, **library_specific_params)¶
- Parameters:
- x: str
x-axis column name from the gpu dataframe
- y: str
y-axis column name from the gpu dataframe
- x_range: tuple, default(gpu_dataframe[x].min(), gpu_dataframe[x].max())
(min, max) x-dimensions of the geo-scatter plot to be displayed
- y_range: tuple, default(gpu_dataframe[y].min(), gpu_dataframe[y].max())
(min, max) x-dimensions of the geo-scatter plot to be displayed
- add_interaction: {True, False}, default True
- pixel_shade_type: str, default ‘linear’
The “how” parameter in datashader.transfer_functions.shade() function. Available options: eq_hist, linear, log, cbrt
- color: str, default #8735fb
- step_size: int, default None
for the range_slider below the chart
- step_size_type: type, default int
for the range_slider below the chart
- width: int, default 800
- height: int, default 400
- title: str,
chart title
- timeout: int (milliseconds), default 100
Determines the timeout after which the callback will process new events without the previous one having reported completion. Increase for very long running callbacks and if zooming feels laggy.
- unselected_alpha: float [0, 1], default 0.2
if True, displays unselected data in the same color_palette but transparent(alpha=0.2)
- **library_specific_params:
additional library specific keyword arguments to be passed to the function
- Returns:
- A cudashader scatter plot of type:
cuxfilter.charts.datashader.custom_extensions.InteractiveDatashaderLine
Example¶
from cuxfilter import DataFrame
from cuxfilter.charts.datashader import line
import numpy as np
import cudf
import random
import cuxfilter
n = 100000 # Number of points
start = 1456297053 # Start time
end = start + 60 * 60 * 24
cux_df = DataFrame.from_dataframe(cudf.DataFrame({'x': np.linspace(start, end, n), 'y':np.random.normal(0, 0.3, size=n).cumsum() + 50}))
line_chart_1 = line(x='x', y='y', unselected_alpha=0.2)
d = cux_df.dashboard([line_chart_1])
line_chart_1.view()