Deckgl Charts#
Choropleth Chart#
- deckgl.choropleth(color_column, elevation_column=None, color_aggregate_fn='count', color_factor=1, elevation_aggregate_fn='sum', elevation_factor=1, add_interaction=True, geoJSONSource=None, geoJSONProperty=None, geo_color_palette=None, mapbox_api_key=None, map_style=None, tooltip=True, tooltip_include_cols=[], nan_color='#d3d3d3', title='', x_range=None, y_range=None, opacity=None, layer_spec={})#
- Parameters:
- x: str
x-axis column name from the gpu dataframe
- color_column: str
column name from the gpu dataframe on which color palettes are based on
- elevation_column: str | Optional
column name from the gpu dataframe on which elevation scale is based on
- color_aggregate_fn: {‘count’, ‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’},
- default “count”
aggregate function to be applied on the color column while performing groupby aggregation by column x
- color_factor: float, default 1
factor to be multiplied to each value of color column before mapping the color
- elevation_aggregate_fn: {‘count’, ‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’},
- default “count”
aggregate function to be applied on the elevation column while performing groupby aggregation by column x
- elevation_factor: float, default 1
factor to be multiplied to each value of elevation column before scaling the elevation
- add_interaction: {True, False}, default True
- geoJSONSource: str
url to the geoJSON file
- geoJSONProperty: str, optional
Property to use while doing aggregation operations using the geoJSON file. Defaults to the first value in properties in geoJSON file.
- geo_color_palette: bokeh.palette, default bokeh.palettes.Inferno256
- mapbox_api_key: str, default os.getenv(‘MAPBOX_API_KEY’)
- map_style: str,
- default based on cuxfilter.themes:
dark/rapids_dark theme: ‘mapbox://styles/mapbox/dark-v9’ default/rapids theme: ‘mapbox://styles/mapbox/light-v9’
URI for Mapbox basemap style. See Mapbox’s https://docs.mapbox.com/mapbox-gl-js/example/setstyle/ for examples
- tooltip: {True, False}, default True
- tooltip_include_cols: [], default list(dataframe.columns)
- nan_color: hex color code, default cuxfilter.charts.CUXF_NAN_COLOR
color of the patches of value NaN in the map.
- title: str,
chart title
- x_range: tuple, default None (it’s calculated automatically)
tuple of min and max values for x-axis
- y_range: tuple, default None (it’s calculated automatically)
tuple of min and max values for y-axis
- opacity: float, default None
opacity of the chart
- layer_spec: dict, default {}
deck.gl layer spec dictionary to override the default layer spec. For more information, see https://deck.gl/docs/api-reference/layers/polygon-layer
- Returns:
- A bokeh chart object of type choropleth (2d or 3d depending on the value
of elevation_column)
Example 3d-Choropleth#
import numpy as np
import cudf
import cuxfilter
geoJSONSource='https://raw.githubusercontent.com/rapidsai/cuxfilter/GTC-2018-mortgage-visualization/javascript/demos/GTC%20demo/src/data/zip3-ms-rhs-lessprops.json'
size = 1000
cux_df = cuxfilter.DataFrame.from_dataframe(
cudf.DataFrame({
'color':np.random.randint(20,30, size=size*10)/100,
'zip': list(np.arange(1,1001))*10,
'elevation': np.random.randint(0,1000, size=size*10)
})
)
chart0 = cuxfilter.charts.choropleth( x='zip', color_column='color', color_aggregate_fn='mean',
elevation_column='elevation', elevation_factor=1000, elevation_aggregate_fn='mean',
geoJSONSource=geoJSONSource, add_interaction=True
)
#declare dashboard
d = cux_df.dashboard([chart0],theme = cuxfilter.themes.dark, title='Mortgage Dashboard')
# use chart0.view() in a notebook cell to view the individual charts
chart0.view()
Example 2d-Choropleth#
import numpy as np
import cudf
import cuxfilter
geoJSONSource='https://raw.githubusercontent.com/rapidsai/cuxfilter/GTC-2018-mortgage-visualization/javascript/demos/GTC%20demo/src/data/zip3-ms-rhs-lessprops.json'
size = 1000
cux_df = cuxfilter.DataFrame.from_dataframe(
cudf.DataFrame({
'color':np.random.randint(20,30, size=size*10)/100,
'zip': list(np.arange(1,1001))*10,
'elevation': np.random.randint(0,1000, size=size*10)
})
)
chart0 = cuxfilter.charts.choropleth( x='zip', color_column='color', color_aggregate_fn='mean',
geoJSONSource=geoJSONSource, add_interaction=True
)
#declare dashboard
d = cux_df.dashboard([chart0],theme = cuxfilter.themes.dark, title='Mortgage Dashboard')
# use chart0.view() in a notebook cell to view the individual charts
chart0.view()