Table View#
- core.view_dataframe(drop_duplicates=False, force_computation=False)#
- Parameters:
- columns: list, default None
display subset of columns, and all columns if None
- drop_duplicates: bool, default False
display only unique rows if True
- force_computation: bool, default False
force_computation=False returns df.head(1000)
force_computation=True returns entire df, but it can be
computationally intensive
- Returns:
- A view dataframe object.
- Type cuxfilter.charts.core_view_dataframe.ViewDataFrame
Example#
import numpy as np
import cudf
import cuxfilter
geoJSONSource='https://raw.githubusercontent.com/rapidsai/cuxfilter/GTC-2018-mortgage-visualization/javascript/demos/GTC%20demo/src/data/zip3-ms-rhs-lessprops.json'
size = 1000
cux_df = cuxfilter.DataFrame.from_dataframe(
cudf.DataFrame({
'_color':np.random.randint(20,30, size=size*10)/100,
'zip': list(np.arange(1,1001))*10,
'elevation': np.random.randint(0,1000, size=size*10)
})
)
chart0 = cuxfilter.charts.view_dataframe(['zip', 'elevation'])
#declare dashboard
d = cux_df.dashboard([chart0], title='Mortgage Dashboard')
# cuxfilter.load_notebook_assets()
chart0.view()