Installation
KvikIO can be installed using Conda/Mamba or from source.
Conda/Mamba
We strongly recommend using mamba inplace of conda, which we will do throughout the documentation.
Install the stable release from the rapidsai
channel like:
# Install in existing environment
mamba install -c rapidsai -c conda-forge kvikio
# Create new environment (CUDA 11.8)
mamba create -n kvikio-env -c rapidsai -c conda-forge python=3.12 cuda-version=11.8 kvikio
# Create new environment (CUDA 12.5)
mamba create -n kvikio-env -c rapidsai -c conda-forge python=3.12 cuda-version=12.5 kvikio
Install the nightly release from the rapidsai-nightly
channel like:
# Install in existing environment
mamba install -c rapidsai-nightly -c conda-forge kvikio
# Create new environment (CUDA 11.8)
mamba create -n kvikio-env -c rapidsai-nightly -c conda-forge python=3.12 cuda-version=11.8 kvikio
# Create new environment (CUDA 12.5)
mamba create -n kvikio-env -c rapidsai-nightly -c conda-forge python=3.12 cuda-version=12.5 kvikio
Note
If the nightly install doesn’t work, set channel_priority: flexible
in your .condarc
.
Build from source
In order to setup a development environment, we recommend Conda:
# CUDA 11.8
mamba env create --name kvikio-dev --file conda/environments/all_cuda-118_arch-x86_64.yaml
# CUDA 12.5
mamba env create --name kvikio-dev --file conda/environments/all_cuda-125_arch-x86_64.yaml
The Python library depends on the C++ library, thus we build and install both:
./build.sh libkvikio kvikio
One might have to define CUDA_HOME
to the path to the CUDA installation.
In order to test the installation, run the following:
pytest python/kvikio/tests/
And to test performance, run the following:
python python/kvikio/kvikio/benchmarks/single_node_io.py