cpu.hpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2023-2024, NVIDIA CORPORATION.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #pragma once
23 
24 #include <cstddef>
25 #include <iostream>
26 #include <new>
27 #include <numeric>
28 #include <vector>
29 
30 namespace ML {
31 namespace experimental {
32 namespace fil {
33 namespace detail {
34 
69 template <bool has_categorical_nodes,
70  bool predict_leaf,
71  typename forest_t,
72  typename vector_output_t = std::nullptr_t,
73  typename categorical_data_t = std::nullptr_t>
76  typename forest_t::io_type* output,
77  typename forest_t::io_type const* input,
78  index_type row_count,
79  index_type col_count,
80  index_type num_outputs,
81  index_type chunk_size = hardware_constructive_interference_size,
82  index_type grove_size = hardware_constructive_interference_size,
83  vector_output_t vector_output_p = nullptr,
84  categorical_data_t categorical_data = nullptr,
86 {
87  auto constexpr has_vector_leaves = !std::is_same_v<vector_output_t, std::nullptr_t>;
88  auto constexpr has_nonlocal_categories = !std::is_same_v<categorical_data_t, std::nullptr_t>;
89 
90  using node_t = typename forest_t::node_type;
91 
92  using output_t = typename forest_t::template raw_output_type<vector_output_t>;
93 
94  auto const num_tree = forest.tree_count();
95  auto const num_grove = raft_proto::ceildiv(num_tree, grove_size);
96  auto const num_chunk = raft_proto::ceildiv(row_count, chunk_size);
97 
98  auto output_workspace = std::vector<output_t>(row_count * num_outputs * num_grove, output_t{});
99  auto const task_count = num_grove * num_chunk;
100 
101  // Infer on each grove and chunk
102 #pragma omp parallel for
103  for (auto task_index = index_type{}; task_index < task_count; ++task_index) {
104  auto const grove_index = task_index / num_chunk;
105  auto const chunk_index = task_index % num_chunk;
106  auto const start_row = chunk_index * chunk_size;
107  auto const end_row = std::min(start_row + chunk_size, row_count);
108  auto const start_tree = grove_index * grove_size;
109  auto const end_tree = std::min(start_tree + grove_size, num_tree);
110 
111  for (auto row_index = start_row; row_index < end_row; ++row_index) {
112  for (auto tree_index = start_tree; tree_index < end_tree; ++tree_index) {
113  auto tree_output =
114  std::conditional_t<predict_leaf,
115  index_type,
116  std::conditional_t<has_vector_leaves,
117  typename node_t::index_type,
118  typename node_t::threshold_type>>{};
119  tree_output = evaluate_tree<has_vector_leaves,
120  has_categorical_nodes,
121  has_nonlocal_categories,
122  predict_leaf>(
123  forest, tree_index, input + row_index * col_count, categorical_data);
124  if constexpr (predict_leaf) {
125  output_workspace[row_index * num_outputs * num_grove + tree_index * num_grove +
126  grove_index] = static_cast<typename forest_t::io_type>(tree_output);
127  } else {
128  auto const default_num_outputs = forest.num_outputs();
129  if constexpr (has_vector_leaves) {
130  auto output_offset =
131  (row_index * num_outputs * num_grove +
132  tree_index * default_num_outputs * num_grove * (infer_type == infer_kind::per_tree) +
133  grove_index);
134  for (auto output_index = index_type{}; output_index < default_num_outputs;
135  ++output_index) {
136  output_workspace[output_offset + output_index * num_grove] +=
137  vector_output_p[tree_output * default_num_outputs + output_index];
138  }
139  } else {
140  auto output_offset =
141  (row_index * num_outputs * num_grove +
142  (tree_index % default_num_outputs) * num_grove *
143  (infer_type == infer_kind::default_kind) +
144  tree_index * num_grove * (infer_type == infer_kind::per_tree) + grove_index);
145  output_workspace[output_offset] += tree_output;
146  }
147  }
148  } // Trees
149  } // Rows
150  } // Tasks
151 
152  // Sum over grove and postprocess
153 #pragma omp parallel for
154  for (auto row_index = index_type{}; row_index < row_count; ++row_index) {
155  for (auto output_index = index_type{}; output_index < num_outputs; ++output_index) {
156  auto grove_offset = (row_index * num_outputs * num_grove + output_index * num_grove);
157 
158  output_workspace[grove_offset] =
159  std::accumulate(std::begin(output_workspace) + grove_offset,
160  std::begin(output_workspace) + grove_offset + num_grove,
161  output_t{});
162  }
163  postproc(output_workspace.data() + row_index * num_outputs * num_grove,
164  num_outputs,
165  output + row_index * num_outputs,
166  num_grove);
167  }
168 }
169 
170 } // namespace detail
171 } // namespace fil
172 } // namespace experimental
173 } // namespace ML
HOST DEVICE auto evaluate_tree(forest_t const &forest, index_type tree_index, io_t const *__restrict__ row, categorical_data_t categorical_data)
Definition: evaluate_tree.hpp:174
void infer_kernel_cpu(forest_t const &forest, postprocessor< typename forest_t::io_type > const &postproc, typename forest_t::io_type *output, typename forest_t::io_type const *input, index_type row_count, index_type col_count, index_type num_outputs, index_type chunk_size=hardware_constructive_interference_size, index_type grove_size=hardware_constructive_interference_size, vector_output_t vector_output_p=nullptr, categorical_data_t categorical_data=nullptr, infer_kind infer_type=infer_kind::default_kind)
Definition: cpu.hpp:74
uint32_t index_type
Definition: index_type.hpp:21
infer_kind
Definition: infer_kind.hpp:20
forest< real_t > * forest_t
Definition: fil.h:89
Definition: dbscan.hpp:30
HOST DEVICE constexpr auto ceildiv(T dividend, U divisor)
Definition: ceildiv.hpp:21
Definition: forest.hpp:36
HOST DEVICE auto tree_count() const
Definition: forest.hpp:68
HOST DEVICE auto num_outputs() const
Definition: forest.hpp:72
Definition: postprocessor.hpp:141