27 #include <treelite/c_api.h>
28 #include <treelite/enum/task_type.h>
29 #include <treelite/enum/tree_node_type.h>
30 #include <treelite/enum/typeinfo.h>
31 #include <treelite/tree.h>
37 namespace experimental {
54 template <tree_layout layout>
65 "Layout not yet implemented in treelite importer for FIL");
72 tl_model,
index_type{}, [](
auto&& count,
auto&& tree) {
return count + tree.num_nodes; });
79 auto result = std::vector<index_type>(node_count);
80 auto parent_indexes = std::vector<index_type>{};
81 parent_indexes.reserve(node_count);
82 ML::experimental::forest::node_transform<traversal_order>(
84 std::back_inserter(parent_indexes),
85 [](
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
return parent_index; });
86 for (
auto i = std::size_t{}; i < node_count; ++i) {
87 result[parent_indexes[i]] = i - parent_indexes[i];
95 std::visit([&result](
auto&& concrete_tl_model) { result = concrete_tl_model.trees.size(); },
102 auto result = std::vector<index_type>{};
104 tl_model, std::back_inserter(result), [](
auto&& tree) {
return tree.num_nodes; });
110 return static_cast<index_type>(tl_model.num_class[0]);
115 return static_cast<index_type>(tl_model.num_feature);
120 return ML::experimental::forest::node_accumulate<traversal_order>(
123 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
130 return ML::experimental::forest::node_accumulate<traversal_order>(
133 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
140 return ML::experimental::forest::node_accumulate<traversal_order>(
143 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
144 auto accum = cur_accum;
152 auto result =
double{};
153 if (tl_model.average_tree_output) {
154 if (tl_model.task_type == treelite::TaskType::kMultiClf &&
155 tl_model.leaf_vector_shape[1] == 1) {
156 result =
num_trees(tl_model) / tl_model.num_class[0];
168 return static_cast<double>(tl_model.base_scores[0]);
174 auto tl_pred_transform = tl_model.postprocessor;
175 if (tl_pred_transform == std::string{
"identity"} ||
176 tl_pred_transform == std::string{
"identity_multiclass"}) {
179 }
else if (tl_pred_transform == std::string{
"signed_square"}) {
181 }
else if (tl_pred_transform == std::string{
"hinge"}) {
183 }
else if (tl_pred_transform == std::string{
"sigmoid"}) {
184 result.constant = tl_model.sigmoid_alpha;
186 }
else if (tl_pred_transform == std::string{
"exponential"}) {
188 }
else if (tl_pred_transform == std::string{
"exponential_standard_ratio"}) {
189 result.constant = -tl_model.ratio_c / std::log(2);
191 }
else if (tl_pred_transform == std::string{
"logarithm_one_plus_exp"}) {
193 }
else if (tl_pred_transform == std::string{
"max_index"}) {
195 }
else if (tl_pred_transform == std::string{
"softmax"}) {
197 }
else if (tl_pred_transform == std::string{
"multiclass_ova"}) {
198 result.constant = tl_model.sigmoid_alpha;
209 switch (tl_model.GetThresholdType()) {
210 case treelite::TypeInfo::kFloat64: result =
true;
break;
211 case treelite::TypeInfo::kFloat32: result =
false;
break;
220 switch (tl_model.GetThresholdType()) {
221 case treelite::TypeInfo::kFloat64: result =
true;
break;
222 case treelite::TypeInfo::kFloat32: result =
false;
break;
223 case treelite::TypeInfo::kUInt32: result =
false;
break;
232 switch (tl_model.GetThresholdType()) {
233 case treelite::TypeInfo::kFloat64: result =
false;
break;
234 case treelite::TypeInfo::kFloat32: result =
false;
break;
235 case treelite::TypeInfo::kUInt32: result =
true;
break;
245 template <index_type variant_index>
247 treelite::Model
const& tl_model,
251 std::vector<index_type>
const& offsets,
258 if constexpr (variant_index != std::variant_size_v<decision_forest_variant>) {
259 if (variant_index == target_variant_index) {
260 using forest_model_t = std::variant_alternative_t<variant_index, decision_forest_variant>;
268 detail::decision_forest_builder<forest_model_t>(max_num_categories, align_bytes);
270 ML::experimental::forest::node_for_each<traversal_order>(
272 [&builder, &offsets, &node_index](
273 auto&& tree_id,
auto&& node,
auto&& depth,
auto&& parent_index) {
274 if (node.is_leaf()) {
275 auto output = node.get_output();
276 builder.set_output_size(output.size());
277 if (output.size() > index_type{1}) {
278 builder.add_leaf_vector_node(
279 std::begin(output), std::end(output), node.get_treelite_id(), depth);
282 typename forest_model_t::io_type(output[0]), node.get_treelite_id(), depth,
true);
285 if (node.is_categorical()) {
286 auto categories = node.get_categories();
287 builder.add_categorical_node(std::begin(categories),
288 std::end(categories),
289 node.get_treelite_id(),
291 node.default_distant(),
293 offsets[node_index]);
295 builder.add_node(
typename forest_model_t::threshold_type(node.threshold()),
296 node.get_treelite_id(),
299 node.default_distant(),
303 node.is_inclusive());
310 builder.set_bias(
get_bias(tl_model));
312 builder.set_element_postproc(postproc_params.element);
313 builder.set_row_postproc(postproc_params.row);
314 builder.set_postproc_constant(postproc_params.constant);
316 result.template emplace<variant_index>(
317 builder.get_decision_forest(num_feature, num_class, mem_type, device, stream));
319 result = import_to_specific_variant<variant_index + 1>(target_variant_index,
356 auto import(treelite::Model
const& tl_model,
358 std::optional<bool> use_double_precision = std::nullopt,
363 ASSERT(tl_model.num_target == 1,
"FIL does not support multi-target model");
365 if (tl_model.task_type == treelite::TaskType::kMultiClf) {
367 if (tl_model.leaf_vector_shape[1] > 1) {
368 ASSERT(tl_model.leaf_vector_shape[1] ==
int(tl_model.num_class[0]),
369 "Vector leaf must be equal to num_class = %d",
370 tl_model.num_class[0]);
371 auto tree_count = num_trees(tl_model);
372 for (decltype(tree_count) tree_id = 0; tree_id < tree_count; ++tree_id) {
373 ASSERT(tl_model.class_id[tree_id] == -1,
"Tree %d has invalid class assignment", tree_id);
376 auto tree_count = num_trees(tl_model);
377 for (decltype(tree_count) tree_id = 0; tree_id < tree_count; ++tree_id) {
378 ASSERT(tl_model.class_id[tree_id] ==
int(tree_id % tl_model.num_class[0]),
379 "Tree %d has invalid class assignment",
385 for (std::int32_t class_id = 1; class_id < tl_model.num_class[0]; ++class_id) {
386 ASSERT(tl_model.base_scores[0] == tl_model.base_scores[class_id],
387 "base_scores must be identical for all classes");
391 auto num_feature = get_num_feature(tl_model);
392 auto max_num_categories = get_max_num_categories(tl_model);
393 auto num_categorical_nodes = get_num_categorical_nodes(tl_model);
394 auto num_leaf_vector_nodes = get_num_leaf_vector_nodes(tl_model);
395 auto use_double_thresholds = use_double_precision.value_or(uses_double_thresholds(tl_model));
397 auto offsets = get_offsets(tl_model);
398 auto max_offset = *std::max_element(std::begin(offsets), std::end(offsets));
403 num_categorical_nodes,
405 num_leaf_vector_nodes,
407 auto num_class = get_num_class(tl_model);
408 return forest_model{import_to_specific_variant<
index_type{}>(variant_index,
447 std::optional<bool> use_double_precision = std::nullopt,
452 auto result = forest_model{};
454 case tree_layout::depth_first:
455 result = treelite_importer<tree_layout::depth_first>{}.import(
456 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
458 case tree_layout::breadth_first:
459 result = treelite_importer<tree_layout::breadth_first>{}.import(
460 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
462 case tree_layout::layered_children_together:
463 result = treelite_importer<tree_layout::layered_children_together>{}.import(
464 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
497 std::optional<bool> use_double_precision = std::nullopt,
505 use_double_precision,
math_t max(math_t a, math_t b)
Definition: learning_rate.h:27
tree_layout
Definition: tree_layout.hpp:20
@ layered_children_together
element_op
Definition: postproc_ops.hpp:29
uint32_t index_type
Definition: index_type.hpp:21
std::variant< detail::preset_decision_forest< std::variant_alternative_t< 0, detail::specialization_variant >::layout, std::variant_alternative_t< 0, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 0, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 1, detail::specialization_variant >::layout, std::variant_alternative_t< 1, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 1, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 2, detail::specialization_variant >::layout, std::variant_alternative_t< 2, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 2, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 3, detail::specialization_variant >::layout, std::variant_alternative_t< 3, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 3, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 4, detail::specialization_variant >::layout, std::variant_alternative_t< 4, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 4, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 5, detail::specialization_variant >::layout, std::variant_alternative_t< 5, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 5, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 6, detail::specialization_variant >::layout, std::variant_alternative_t< 6, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 6, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 7, detail::specialization_variant >::layout, std::variant_alternative_t< 7, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 7, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 8, detail::specialization_variant >::layout, std::variant_alternative_t< 8, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 8, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 9, detail::specialization_variant >::layout, std::variant_alternative_t< 9, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 9, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 10, detail::specialization_variant >::layout, std::variant_alternative_t< 10, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 10, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 11, detail::specialization_variant >::layout, std::variant_alternative_t< 11, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 11, detail::specialization_variant >::has_large_trees > > decision_forest_variant
Definition: decision_forest.hpp:432
auto get_forest_variant_index(bool use_double_thresholds, index_type max_node_offset, index_type num_features, index_type num_categorical_nodes=index_type{}, index_type max_num_categories=index_type{}, index_type num_vector_leaves=index_type{}, tree_layout layout=preferred_tree_layout)
Definition: decision_forest.hpp:452
auto import_from_treelite_handle(TreeliteModelHandle tl_handle, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:494
row_op
Definition: postproc_ops.hpp:22
auto import_from_treelite_model(treelite::Model const &tl_model, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:444
void tree_transform(treelite::Model const &tl_model, iter_t out_iter, lambda_t &&lambda)
Definition: treelite.hpp:177
auto tree_accumulate(treelite::Model const &tl_model, T init, lambda_t &&lambda)
Definition: treelite.hpp:188
@ layered_children_together
Definition: dbscan.hpp:30
int cuda_stream
Definition: cuda_stream.hpp:25
device_type
Definition: device_type.hpp:18
Definition: treelite_importer.hpp:42
element_op element
Definition: treelite_importer.hpp:43
double constant
Definition: treelite_importer.hpp:45
row_op row
Definition: treelite_importer.hpp:44
Definition: exceptions.hpp:36
HOST DEVICE constexpr auto is_categorical() const
Definition: node.hpp:166
HOST DEVICE constexpr auto is_leaf() const
Definition: node.hpp:156
Definition: treelite_importer.hpp:55
auto import_to_specific_variant(index_type target_variant_index, treelite::Model const &tl_model, index_type num_class, index_type num_feature, index_type max_num_categories, std::vector< index_type > const &offsets, index_type align_bytes=index_type{}, raft_proto::device_type mem_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:246
auto uses_double_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:217
auto get_num_feature(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:113
auto get_tree_sizes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:100
auto get_num_leaf_vector_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:138
auto get_num_class(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:108
auto get_postproc_params(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:171
static constexpr auto const traversal_order
Definition: treelite_importer.hpp:56
auto get_node_count(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:69
auto get_num_categorical_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:128
auto get_bias(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:166
auto uses_double_thresholds(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:206
auto uses_integer_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:229
auto get_average_factor(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:150
auto get_offsets(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:76
auto get_max_num_categories(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:118
auto num_trees(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:92
void * TreeliteModelHandle
Definition: treelite_defs.hpp:23