19 #include "../condensed_hierarchy.cu"
25 #include <raft/core/device_mdspan.hpp>
26 #include <raft/label/classlabels.cuh>
27 #include <raft/linalg/matrix_vector_op.cuh>
28 #include <raft/linalg/norm.cuh>
29 #include <raft/sparse/convert/csr.cuh>
30 #include <raft/sparse/op/sort.cuh>
31 #include <raft/util/cudart_utils.hpp>
33 #include <rmm/device_uvector.hpp>
34 #include <rmm/exec_policy.hpp>
36 #include <cub/cub.cuh>
37 #include <cuda/functional>
38 #include <thrust/copy.h>
39 #include <thrust/execution_policy.h>
40 #include <thrust/for_each.h>
41 #include <thrust/functional.h>
42 #include <thrust/iterator/zip_iterator.h>
43 #include <thrust/reduce.h>
44 #include <thrust/sort.h>
45 #include <thrust/transform.h>
46 #include <thrust/transform_reduce.h>
47 #include <thrust/tuple.h>
69 template <
typename value_
idx,
typename value_t,
typename CUBReduceFunc>
73 const value_idx* offsets,
75 CUBReduceFunc cub_reduce_func)
77 rmm::device_uvector<char> d_temp_storage(0, stream);
78 size_t temp_storage_bytes = 0;
79 cub_reduce_func(
nullptr, temp_storage_bytes, in, out, n_segments, offsets, offsets + 1, stream);
80 d_temp_storage.resize(temp_storage_bytes, stream);
83 d_temp_storage.data(), temp_storage_bytes, in, out, n_segments, offsets, offsets + 1, stream);
95 template <
typename value_
idx,
typename value_t>
99 auto stream = handle.get_stream();
100 auto thrust_policy = handle.get_thrust_policy();
106 value_idx cluster_tree_edges = thrust::transform_reduce(
110 cuda::proclaim_return_type<value_idx>(
111 [=] __device__(value_idx a) -> value_idx {
return static_cast<value_idx
>(a > 1); }),
112 static_cast<value_idx
>(0),
113 cuda::std::plus<value_idx>());
116 rmm::device_uvector<value_idx> cluster_parents(cluster_tree_edges, stream);
117 rmm::device_uvector<value_idx> cluster_children(cluster_tree_edges, stream);
118 rmm::device_uvector<value_t> cluster_lambdas(cluster_tree_edges, stream);
119 rmm::device_uvector<value_idx> cluster_sizes(cluster_tree_edges, stream);
121 auto in = thrust::make_zip_iterator(thrust::make_tuple(parents, children, lambdas, sizes));
123 auto out = thrust::make_zip_iterator(thrust::make_tuple(
124 cluster_parents.data(), cluster_children.data(), cluster_lambdas.data(), cluster_sizes.data()));
126 thrust::copy_if(thrust_policy,
131 [=] __device__(value_idx a) {
return a > 1; });
135 cluster_parents.begin(),
136 cluster_parents.end(),
137 cluster_parents.begin(),
138 [n_leaves] __device__(value_idx a) {
return a - n_leaves; });
140 cluster_children.begin(),
141 cluster_children.end(),
142 cluster_children.begin(),
143 [n_leaves] __device__(value_idx a) {
return a - n_leaves; });
149 std::move(cluster_parents),
150 std::move(cluster_children),
151 std::move(cluster_lambdas),
152 std::move(cluster_sizes));
164 template <
typename value_
idx,
typename value_t>
167 value_idx* sorted_parents,
170 auto stream = handle.get_stream();
171 auto thrust_policy = handle.get_thrust_policy();
180 auto index_op = [n_leaves] __device__(
const auto& x) {
return x - n_leaves; };
182 thrust_policy, sorted_parents, sorted_parents + n_edges, sorted_parents, index_op);
184 raft::sparse::convert::sorted_coo_to_csr(sorted_parents, n_edges, indptr, n_clusters + 1, stream);
187 template <
typename value_
idx,
typename value_t>
188 void normalize(value_t* data, value_idx n,
size_t m, cudaStream_t stream)
190 rmm::device_uvector<value_t> sums(m, stream);
193 raft::linalg::rowNorm<value_t, size_t>(
194 sums.data(), data, (
size_t)n, m, raft::linalg::L1Norm,
true, stream);
197 raft::linalg::matrixVectorOp(
199 const_cast<value_t*
>(data),
205 [] __device__(value_t mat_in, value_t vec_in) {
return mat_in / vec_in; },
219 template <
typename value_
idx,
typename value_t>
220 void softmax(
const raft::handle_t& handle, value_t* data, value_idx n,
size_t m)
222 rmm::device_uvector<value_t> linf_norm(m, handle.get_stream());
224 auto data_const_view =
225 raft::make_device_matrix_view<const value_t, value_idx, raft::row_major>(data, (
int)m, n);
227 raft::make_device_matrix_view<value_t, value_idx, raft::row_major>(data, (
int)m, n);
228 auto linf_norm_const_view =
229 raft::make_device_vector_view<const value_t, value_idx>(linf_norm.data(), (
int)m);
230 auto linf_norm_view = raft::make_device_vector_view<value_t, value_idx>(linf_norm.data(), (
int)m);
232 raft::linalg::norm(handle,
235 raft::linalg::LinfNorm,
236 raft::linalg::Apply::ALONG_ROWS);
238 raft::linalg::matrix_vector_op(
241 linf_norm_const_view,
243 raft::linalg::Apply::ALONG_COLUMNS,
244 [] __device__(value_t mat_in, value_t vec_in) {
return exp(mat_in - vec_in); });
Definition: hdbscan.hpp:40
value_idx * get_sizes()
Definition: hdbscan.hpp:118
value_t * get_lambdas()
Definition: hdbscan.hpp:117
value_idx get_n_leaves() const
Definition: hdbscan.hpp:121
value_idx get_n_edges()
Definition: hdbscan.hpp:119
value_idx * get_children()
Definition: hdbscan.hpp:116
int get_n_clusters()
Definition: hdbscan.hpp:120
value_idx * get_parents()
Definition: hdbscan.hpp:115
Common::CondensedHierarchy< value_idx, value_t > make_cluster_tree(const raft::handle_t &handle, Common::CondensedHierarchy< value_idx, value_t > &condensed_tree)
Definition: utils.h:96
void softmax(const raft::handle_t &handle, value_t *data, value_idx n, size_t m)
Definition: utils.h:220
void normalize(value_t *data, value_idx n, size_t m, cudaStream_t stream)
Definition: utils.h:188
void cub_segmented_reduce(const value_t *in, value_t *out, int n_segments, const value_idx *offsets, cudaStream_t stream, CUBReduceFunc cub_reduce_func)
Definition: utils.h:70
void parent_csr(const raft::handle_t &handle, Common::CondensedHierarchy< value_idx, value_t > &condensed_tree, value_idx *sorted_parents, value_idx *indptr)
Definition: utils.h:165
void transform(const raft::handle_t &handle, const KMeansParams ¶ms, const float *centroids, const float *X, int n_samples, int n_features, float *X_new)
Transform X to a cluster-distance space.
Definition: dbscan.hpp:30