25 #include <raft/core/handle.hpp>
51 template <
typename math_t>
52 void svcFit(
const raft::handle_t& handle,
60 const math_t* sample_weight);
84 template <
typename math_t>
96 const math_t* sample_weight);
127 template <
typename math_t>
169 template <
typename math_t>
189 template <
typename math_t>
211 template <
typename math_t>
230 SVC(raft::handle_t& handle,
235 math_t cache_size = 200,
237 int nochange_steps = 1000,
238 rapids_logger::level_enum verbosity = rapids_logger::level_enum::info);
255 math_t* input,
int n_rows,
int n_cols, math_t* labels,
const math_t* sample_weight =
nullptr);
266 void predict(math_t* input,
int n_rows,
int n_cols, math_t* preds);
280 const raft::handle_t& handle;
C-Support Vector Classification.
Definition: svc.hpp:212
SvmModel< math_t > model
Definition: svc.hpp:218
ML::matrix::KernelParams kernel_params
Definition: svc.hpp:216
SvmParameter param
Definition: svc.hpp:217
SVC(raft::handle_t &handle, math_t C=1, math_t tol=1.0e-3, ML::matrix::KernelParams kernel_params=ML::matrix::KernelParams{ML::matrix::KernelType::LINEAR, 3, 1, 0}, math_t cache_size=200, int max_iter=-1, int nochange_steps=1000, rapids_logger::level_enum verbosity=rapids_logger::level_enum::info)
Constructs a support vector classifier.
void fit(math_t *input, int n_rows, int n_cols, math_t *labels, const math_t *sample_weight=nullptr)
Fit a support vector classifier to the training data.
void decisionFunction(math_t *input, int n_rows, int n_cols, math_t *preds)
Calculate decision function value for samples in input.
void predict(math_t *input, int n_rows, int n_cols, math_t *preds)
Predict classes for samples in input.
void buffer_size(int n, int batch_size, int frequency, int *start_leveltrend_len, int *start_season_len, int *components_len, int *error_len, int *leveltrend_coef_shift, int *season_coef_shift)
void svcFitSparse(const raft::handle_t &handle, int *indptr, int *indices, math_t *data, int n_rows, int n_cols, int nnz, math_t *labels, const SvmParameter ¶m, ML::matrix::KernelParams &kernel_params, SvmModel< math_t > &model, const math_t *sample_weight)
Fit a support vector classifier to the training data.
void svcFit(const raft::handle_t &handle, math_t *input, int n_rows, int n_cols, math_t *labels, const SvmParameter ¶m, ML::matrix::KernelParams &kernel_params, SvmModel< math_t > &model, const math_t *sample_weight)
Fit a support vector classifier to the training data.
void svcPredictSparse(const raft::handle_t &handle, int *indptr, int *indices, math_t *data, int n_rows, int n_cols, int nnz, ML::matrix::KernelParams &kernel_params, const SvmModel< math_t > &model, math_t *preds, math_t buffer_size, bool predict_class)
Predict classes or decision function value for samples in input.
void svcPredict(const raft::handle_t &handle, math_t *input, int n_rows, int n_cols, ML::matrix::KernelParams &kernel_params, const SvmModel< math_t > &model, math_t *preds, math_t buffer_size, bool predict_class)
Predict classes or decision function value for samples in input.
void svmFreeBuffers(const raft::handle_t &handle, SvmModel< math_t > &m)
Definition: dbscan.hpp:29
Definition: svm_model.h:35
Definition: svm_parameter.h:36
Definition: kernel_params.hpp:29