17 #include <raft/core/error.hpp>
19 #include <treelite/c_api.h>
20 #include <treelite/enum/task_type.h>
21 #include <treelite/enum/tree_node_type.h>
22 #include <treelite/enum/typeinfo.h>
23 #include <treelite/tree.h>
45 template <tree_layout layout>
56 "Layout not yet implemented in treelite importer for FIL");
63 tl_model,
index_type{}, [](
auto&& count,
auto&& tree) {
return count + tree.num_nodes; });
70 auto result = std::vector<index_type>(node_count);
71 auto parent_indexes = std::vector<index_type>{};
72 parent_indexes.reserve(node_count);
73 ML::forest::node_transform<traversal_order>(
75 std::back_inserter(parent_indexes),
76 [](
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
return parent_index; });
77 for (
auto i = std::size_t{}; i < node_count; ++i) {
78 result[parent_indexes[i]] = i - parent_indexes[i];
86 std::visit([&result](
auto&& concrete_tl_model) { result = concrete_tl_model.trees.size(); },
93 auto result = std::vector<index_type>{};
95 tl_model, std::back_inserter(result), [](
auto&& tree) {
return tree.num_nodes; });
101 return static_cast<index_type>(tl_model.num_class[0]);
106 return static_cast<index_type>(tl_model.num_feature);
111 return ML::forest::node_accumulate<traversal_order>(
114 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
121 return ML::forest::node_accumulate<traversal_order>(
124 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
131 return ML::forest::node_accumulate<traversal_order>(
134 [](
auto&& cur_accum,
auto&& tree_id,
auto&&
node,
auto&& depth,
auto&& parent_index) {
135 auto accum = cur_accum;
143 auto result =
double{};
144 if (tl_model.average_tree_output) {
145 if (tl_model.task_type == treelite::TaskType::kMultiClf &&
146 tl_model.leaf_vector_shape[1] == 1) {
147 result =
num_trees(tl_model) / tl_model.num_class[0];
157 auto get_bias(treelite::Model
const& tl_model) {
return tl_model.base_scores.AsVector(); }
162 auto tl_pred_transform = tl_model.postprocessor;
163 if (tl_pred_transform == std::string{
"identity"} ||
164 tl_pred_transform == std::string{
"identity_multiclass"}) {
167 }
else if (tl_pred_transform == std::string{
"signed_square"}) {
169 }
else if (tl_pred_transform == std::string{
"hinge"}) {
171 }
else if (tl_pred_transform == std::string{
"sigmoid"}) {
172 result.constant = tl_model.sigmoid_alpha;
174 }
else if (tl_pred_transform == std::string{
"exponential"}) {
176 }
else if (tl_pred_transform == std::string{
"exponential_standard_ratio"}) {
177 result.constant = -tl_model.ratio_c / std::log(2);
179 }
else if (tl_pred_transform == std::string{
"logarithm_one_plus_exp"}) {
181 }
else if (tl_pred_transform == std::string{
"max_index"}) {
183 }
else if (tl_pred_transform == std::string{
"softmax"}) {
185 }
else if (tl_pred_transform == std::string{
"multiclass_ova"}) {
186 result.constant = tl_model.sigmoid_alpha;
197 switch (tl_model.GetThresholdType()) {
198 case treelite::TypeInfo::kFloat64: result =
true;
break;
199 case treelite::TypeInfo::kFloat32: result =
false;
break;
208 switch (tl_model.GetThresholdType()) {
209 case treelite::TypeInfo::kFloat64: result =
true;
break;
210 case treelite::TypeInfo::kFloat32: result =
false;
break;
211 case treelite::TypeInfo::kUInt32: result =
false;
break;
220 switch (tl_model.GetThresholdType()) {
221 case treelite::TypeInfo::kFloat64: result =
false;
break;
222 case treelite::TypeInfo::kFloat32: result =
false;
break;
223 case treelite::TypeInfo::kUInt32: result =
true;
break;
233 template <index_type variant_index>
235 treelite::Model
const& tl_model,
239 std::vector<index_type>
const& offsets,
246 if constexpr (variant_index != std::variant_size_v<decision_forest_variant>) {
247 if (variant_index == target_variant_index) {
248 using forest_model_t = std::variant_alternative_t<variant_index, decision_forest_variant>;
255 detail::decision_forest_builder<forest_model_t>(max_num_categories, align_bytes);
257 ML::forest::node_for_each<traversal_order>(
259 [&builder, &offsets, &node_index](
260 auto&& tree_id,
auto&& node,
auto&& depth,
auto&& parent_index) {
261 if (node.is_leaf()) {
262 auto output = node.get_output();
263 builder.set_output_size(output.size());
264 if (output.size() > index_type{1}) {
265 builder.add_leaf_vector_node(
266 std::begin(output), std::end(output), node.get_treelite_id(), depth);
269 typename forest_model_t::io_type(output[0]), node.get_treelite_id(), depth,
true);
272 if (node.is_categorical()) {
273 auto categories = node.get_categories();
274 builder.add_categorical_node(std::begin(categories),
275 std::end(categories),
276 node.get_treelite_id(),
278 node.default_distant(),
280 offsets[node_index]);
282 builder.add_node(
typename forest_model_t::threshold_type(node.threshold()),
283 node.get_treelite_id(),
286 node.default_distant(),
290 node.is_inclusive());
297 builder.set_bias(
get_bias(tl_model));
299 builder.set_element_postproc(postproc_params.element);
300 builder.set_row_postproc(postproc_params.row);
301 builder.set_postproc_constant(postproc_params.constant);
303 result.template emplace<variant_index>(
304 builder.get_decision_forest(num_feature, num_class, mem_type, device, stream));
306 result = import_to_specific_variant<variant_index + 1>(target_variant_index,
345 std::optional<bool> use_double_precision = std::nullopt,
353 *processed_tl_model.get(), align_bytes, use_double_precision, dev_type, device, stream);
356 ASSERT(tl_model.num_target == 1,
"FIL does not support multi-target model");
358 if (tl_model.task_type == treelite::TaskType::kMultiClf) {
360 if (tl_model.leaf_vector_shape[1] > 1) {
361 ASSERT(tl_model.leaf_vector_shape[1] ==
int(tl_model.num_class[0]),
362 "Vector leaf must be equal to num_class = %d",
363 tl_model.num_class[0]);
364 auto tree_count = num_trees(tl_model);
365 for (decltype(tree_count) tree_id = 0; tree_id < tree_count; ++tree_id) {
366 ASSERT(tl_model.class_id[tree_id] == -1,
"Tree %d has invalid class assignment", tree_id);
369 auto tree_count = num_trees(tl_model);
370 for (decltype(tree_count) tree_id = 0; tree_id < tree_count; ++tree_id) {
371 ASSERT(tl_model.class_id[tree_id] ==
int(tree_id % tl_model.num_class[0]),
372 "Tree %d has invalid class assignment",
379 auto num_feature = get_num_feature(tl_model);
380 auto max_num_categories = get_max_num_categories(tl_model);
381 auto num_categorical_nodes = get_num_categorical_nodes(tl_model);
382 auto num_leaf_vector_nodes = get_num_leaf_vector_nodes(tl_model);
383 auto use_double_thresholds = use_double_precision.value_or(uses_double_thresholds(tl_model));
385 auto offsets = get_offsets(tl_model);
386 auto max_offset = *std::max_element(std::begin(offsets), std::end(offsets));
391 num_categorical_nodes,
393 num_leaf_vector_nodes,
395 auto num_class = get_num_class(tl_model);
396 return forest_model{import_to_specific_variant<
index_type{}>(variant_index,
435 std::optional<bool> use_double_precision = std::nullopt,
440 auto result = forest_model{};
442 case tree_layout::depth_first:
443 result = treelite_importer<tree_layout::depth_first>{}.import(
444 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
446 case tree_layout::breadth_first:
447 result = treelite_importer<tree_layout::breadth_first>{}.import(
448 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
450 case tree_layout::layered_children_together:
451 result = treelite_importer<tree_layout::layered_children_together>{}.import(
452 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
485 std::optional<bool> use_double_precision = std::nullopt,
493 use_double_precision,
math_t max(math_t a, math_t b)
Definition: learning_rate.h:16
std::unique_ptr< treelite::Model > convert_degenerate_trees(treelite::Model const &tl_model)
Definition: degenerate_trees.hpp:20
auto get_forest_variant_index(bool use_double_thresholds, index_type max_node_offset, index_type num_features, index_type num_categorical_nodes=index_type{}, index_type max_num_categories=index_type{}, index_type num_vector_leaves=index_type{}, tree_layout layout=preferred_tree_layout)
Definition: decision_forest.hpp:445
tree_layout
Definition: tree_layout.hpp:8
@ layered_children_together
row_op
Definition: postproc_ops.hpp:10
element_op
Definition: postproc_ops.hpp:17
auto import_from_treelite_handle(TreeliteModelHandle tl_handle, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:482
auto import_from_treelite_model(treelite::Model const &tl_model, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:432
uint32_t index_type
Definition: index_type.hpp:9
std::variant< detail::preset_decision_forest< std::variant_alternative_t< 0, detail::specialization_variant >::layout, std::variant_alternative_t< 0, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 0, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 1, detail::specialization_variant >::layout, std::variant_alternative_t< 1, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 1, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 2, detail::specialization_variant >::layout, std::variant_alternative_t< 2, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 2, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 3, detail::specialization_variant >::layout, std::variant_alternative_t< 3, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 3, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 4, detail::specialization_variant >::layout, std::variant_alternative_t< 4, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 4, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 5, detail::specialization_variant >::layout, std::variant_alternative_t< 5, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 5, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 6, detail::specialization_variant >::layout, std::variant_alternative_t< 6, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 6, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 7, detail::specialization_variant >::layout, std::variant_alternative_t< 7, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 7, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 8, detail::specialization_variant >::layout, std::variant_alternative_t< 8, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 8, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 9, detail::specialization_variant >::layout, std::variant_alternative_t< 9, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 9, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 10, detail::specialization_variant >::layout, std::variant_alternative_t< 10, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 10, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 11, detail::specialization_variant >::layout, std::variant_alternative_t< 11, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 11, detail::specialization_variant >::has_large_trees > > decision_forest_variant
Definition: decision_forest.hpp:425
auto tree_accumulate(treelite::Model const &tl_model, T init, lambda_t &&lambda)
Definition: treelite.hpp:183
void tree_transform(treelite::Model const &tl_model, iter_t out_iter, lambda_t &&lambda)
Definition: treelite.hpp:172
@ layered_children_together
Definition: dbscan.hpp:18
int cuda_stream
Definition: cuda_stream.hpp:14
device_type
Definition: device_type.hpp:7
Definition: treelite_importer.hpp:33
element_op element
Definition: treelite_importer.hpp:34
row_op row
Definition: treelite_importer.hpp:35
double constant
Definition: treelite_importer.hpp:36
Definition: forest_model.hpp:29
Definition: exceptions.hpp:24
HOST DEVICE constexpr auto is_categorical() const
Definition: node.hpp:154
HOST DEVICE constexpr auto is_leaf() const
Definition: node.hpp:144
Definition: treelite_importer.hpp:46
auto uses_integer_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:217
auto get_postproc_params(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:159
auto get_num_feature(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:104
auto get_max_num_categories(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:109
auto uses_double_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:205
auto get_bias(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:157
static constexpr auto const traversal_order
Definition: treelite_importer.hpp:47
auto get_num_leaf_vector_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:129
auto import_to_specific_variant(index_type target_variant_index, treelite::Model const &tl_model, index_type num_class, index_type num_feature, index_type max_num_categories, std::vector< index_type > const &offsets, index_type align_bytes=index_type{}, raft_proto::device_type mem_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:234
auto uses_double_thresholds(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:194
auto num_trees(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:83
auto get_num_categorical_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:119
auto get_tree_sizes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:91
auto get_offsets(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:67
auto get_node_count(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:60
auto get_num_class(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:99
auto get_average_factor(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:141
void * TreeliteModelHandle
Definition: treelite_defs.hpp:12