APIs related to trajectories. More...
Files | |
file | trajectory.hpp |
file | trajectory.cuh |
Functions | |
template<typename IdInputIt , typename PointInputIt , typename TimestampInputIt , typename IdOutputIt , typename PointOutputIt , typename TimestampOutputIt , typename OffsetType = std::int32_t> | |
std::unique_ptr< rmm::device_uvector< OffsetType > > | cuspatial::derive_trajectories (IdInputIt ids_first, IdInputIt ids_last, PointInputIt points_first, TimestampInputIt timestamps_first, IdOutputIt ids_output_first, PointOutputIt points_output_first, TimestampOutputIt timestamps_output_first, rmm::cuda_stream_view stream=rmm::cuda_stream_default, rmm::device_async_resource_ref mr=rmm::mr::get_current_device_resource()) |
Derive trajectories from object ids, points, and timestamps. | |
template<typename IdInputIt , typename PointInputIt , typename TimestampInputIt , typename OutputIt , typename IndexT = iterator_value_type<IdInputIt>> | |
OutputIt | cuspatial::trajectory_distances_and_speeds (IndexT num_trajectories, IdInputIt ids_first, IdInputIt ids_last, PointInputIt points_first, TimestampInputIt timestamps_first, OutputIt distances_and_speeds_first, rmm::cuda_stream_view stream=rmm::cuda_stream_default) |
Compute the total distance (in meters) and average speed (in m/s) of objects in trajectories. | |
std::pair< std::unique_ptr< cudf::table >, std::unique_ptr< cudf::column > > | cuspatial::derive_trajectories (cudf::column_view const &object_id, cudf::column_view const &x, cudf::column_view const &y, cudf::column_view const ×tamp, rmm::device_async_resource_ref mr=rmm::mr::get_current_device_resource()) |
Derive trajectories from object ids, points, and timestamps. | |
std::unique_ptr< cudf::table > | cuspatial::trajectory_distances_and_speeds (cudf::size_type num_trajectories, cudf::column_view const &object_id, cudf::column_view const &x, cudf::column_view const &y, cudf::column_view const ×tamp, rmm::device_async_resource_ref mr=rmm::mr::get_current_device_resource()) |
Compute the distance and speed of objects in a trajectory. Groups the timestamp, x, and y, columns by object id to determine unique trajectories, then computes the average distance and speed for all routes in each trajectory. | |
std::unique_ptr< cudf::table > | cuspatial::trajectory_bounding_boxes (cudf::size_type num_trajectories, cudf::column_view const &object_id, cudf::column_view const &x, cudf::column_view const &y, rmm::device_async_resource_ref mr=rmm::mr::get_current_device_resource()) |
Compute the spatial bounding boxes of trajectories. Groups the x, y, and timestamp columns by object id to determine unique trajectories, then computes the minimum bounding box to contain all routes in each trajectory. | |
APIs related to trajectories.
std::pair< std::unique_ptr< cudf::table >, std::unique_ptr< cudf::column > > cuspatial::derive_trajectories | ( | cudf::column_view const & | object_id, |
cudf::column_view const & | x, | ||
cudf::column_view const & | y, | ||
cudf::column_view const & | timestamp, | ||
rmm::device_async_resource_ref | mr = rmm::mr::get_current_device_resource() ) |
Derive trajectories from object ids, points, and timestamps.
Groups the input object ids to determine unique trajectories. Returns a table with the trajectory ids, the number of objects in each trajectory, and the offset position of the first object for each trajectory in the input object ids column.
object_id | column of object (e.g., vehicle) ids |
x | coordinates (in kilometers) |
y | coordinates (in kilometers) |
timestamp | column of timestamps in any resolution |
mr | The optional resource to use for output device memory allocations |
cuspatial::logic_error | If object_id isn't cudf::type_id::INT32 |
cuspatial::logic_error | If x and y are different types |
cuspatial::logic_error | If timestamp isn't a cudf::TIMESTAMP type |
cuspatial::logic_error | If object_id, x, y, or timestamp contain nulls |
cuspatial::logic_error | If object_id, x, y, and timestamp are different sizes |
std::pair<table, column>
:std::unique_ptr< rmm::device_uvector< OffsetType > > cuspatial::derive_trajectories | ( | IdInputIt | ids_first, |
IdInputIt | ids_last, | ||
PointInputIt | points_first, | ||
TimestampInputIt | timestamps_first, | ||
IdOutputIt | ids_output_first, | ||
PointOutputIt | points_output_first, | ||
TimestampOutputIt | timestamps_output_first, | ||
rmm::cuda_stream_view | stream = rmm::cuda_stream_default, | ||
rmm::device_async_resource_ref | mr = rmm::mr::get_current_device_resource() ) |
Derive trajectories from object ids, points, and timestamps.
Output points and timestamps are reordered to be grouped by object ID and ordered by timestamp within groups. Returns a vector containing the offset index of the first object of each trajectory in the output.
IdInputIt | Iterator over object IDs. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
PointInputIt | Iterator over points. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
TimestampInputIt | Iterator over timestamps. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
IdOutputIt | Iterator over output object IDs. Must meet the requirements of LegacyRandomAccessIterator and be device-writeable. |
PointOutputIt | Iterator over output points. Must meet the requirements of LegacyRandomAccessIterator and be device-writeable. |
TimestampOutputIt | Iterator over output timestamps. Must meet the requirements of LegacyRandomAccessIterator and be device-writeable. |
ids_first | beginning of the range of input object ids |
ids_last | end of the range of input object ids |
points_first | beginning of the range of input point (x,y) coordinates |
timestamps_first | beginning of the range of input timestamps |
ids_out_first | beginning of the range of output object ids |
points_out_first | beginning of the range of output point (x,y) coordinates |
timestamps_out_first | beginning of the range of output timestamps |
stream | the CUDA stream on which to perform computations and allocate memory. |
mr | optional resource to use for output device memory allocations |
std::unique_ptr< cudf::table > cuspatial::trajectory_bounding_boxes | ( | cudf::size_type | num_trajectories, |
cudf::column_view const & | object_id, | ||
cudf::column_view const & | x, | ||
cudf::column_view const & | y, | ||
rmm::device_async_resource_ref | mr = rmm::mr::get_current_device_resource() ) |
Compute the spatial bounding boxes of trajectories. Groups the x, y, and timestamp columns by object id to determine unique trajectories, then computes the minimum bounding box to contain all routes in each trajectory.
num_trajectories | number of trajectories (unique object ids) |
object_id | column of object (e.g., vehicle) ids |
x | coordinates (in kilometers) |
y | coordinates (in kilometers) |
mr | The optional resource to use for output device memory allocations |
cuspatial::logic_error | If object_id isn't cudf::type_id::INT32 |
cuspatial::logic_error | If x and y are different types |
cuspatial::logic_error | If object_id, x, or y contain nulls |
cuspatial::logic_error | If object_id, x, and y are different sizes |
num_trajectories
and four columns: x_min - the minimum x-coordinate of each bounding box in kilometers y_min - the minimum y-coordinate of each bounding box in kilometers x_max - the maximum x-coordinate of each bounding box in kilometers y_max - the maximum y-coordinate of each bounding box in kilometers std::unique_ptr< cudf::table > cuspatial::trajectory_distances_and_speeds | ( | cudf::size_type | num_trajectories, |
cudf::column_view const & | object_id, | ||
cudf::column_view const & | x, | ||
cudf::column_view const & | y, | ||
cudf::column_view const & | timestamp, | ||
rmm::device_async_resource_ref | mr = rmm::mr::get_current_device_resource() ) |
Compute the distance and speed of objects in a trajectory. Groups the timestamp, x, and y, columns by object id to determine unique trajectories, then computes the average distance and speed for all routes in each trajectory.
num_trajectories | number of trajectories (unique object ids) |
object_id | column of object (e.g., vehicle) ids |
x | coordinates (in kilometers) |
y | coordinates (in kilometers) |
timestamp | column of timestamps in any resolution |
mr | The optional resource to use for output device memory allocations |
cuspatial::logic_error | If object_id isn't cudf::type_id::INT32 |
cuspatial::logic_error | If x and y are different types |
cuspatial::logic_error | If timestamp isn't a cudf::TIMESTAMP type |
cuspatial::logic_error | If object_id, x, y, or timestamp contain nulls |
cuspatial::logic_error | If object_id, x, y, and timestamp are different sizes |
num_trajectories
, sorted by object_id. OutputIt cuspatial::trajectory_distances_and_speeds | ( | IndexT | num_trajectories, |
IdInputIt | ids_first, | ||
IdInputIt | ids_last, | ||
PointInputIt | points_first, | ||
TimestampInputIt | timestamps_first, | ||
OutputIt | distances_and_speeds_first, | ||
rmm::cuda_stream_view | stream = rmm::cuda_stream_default ) |
Compute the total distance (in meters) and average speed (in m/s) of objects in trajectories.
IdInputIt | Iterator over object IDs. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
PointInputIt | Iterator over points. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
TimestampInputIt | Iterator over timestamps. Must meet the requirements of LegacyRandomAccessIterator and be device-readable. |
OutputIt | Iterator over output (distance, speed) pairs. Must meet the requirements of LegacyRandomAccessIterator and be device-writeable. |
IndexT | The type of the object IDs. |
num_trajectories | number of trajectories (unique object ids) |
ids_first | beginning of the range of input object ids |
ids_last | end of the range of input object ids |
points_first | beginning of the range of input point (x,y) coordinates |
timestamps_first | beginning of the range of input timestamps |
distances_and_speeds_first | beginning of the range of output (distance, speed) pairs |
stream | the CUDA stream on which to perform computations and allocate memory. |