RAPIDS
End-to-End Accelerated GPU Data Science

Data Preparation → Model Training → Visualization

cuDF, cuIO, cuML, cuGraph, PyTorch, Chainer, MxNet, cuXfilter, pyViz

Dask

GPU Memory → Apache Arrow
Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Traditional GPU Processing

25-100x Improvement
Less code
Language flexible
Primarily In-Memory

5-10x Improvement
More code
Language rigid
Substantially on GPU
Data Movement and Transformation

The bane of productivity and performance
Data Movement and Transformation

What if we could keep data on the GPU?
Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization
- Similar functionality implemented in multiple projects

All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (e.g., Parquet-to-Arrow reader)

From Apache Arrow Home Page - https://arrow.apache.org/
Data Processing Evolution

Faster data access, less data movement

Hadoop Processing, Reading from disk

<table>
<thead>
<tr>
<th>HDFS Read</th>
<th>Query</th>
<th>HDFS Write</th>
<th>HDFS Read</th>
<th>ETL</th>
<th>HDFS Write</th>
<th>HDFS Read</th>
<th>ML Train</th>
</tr>
</thead>
</table>

Spark In-Memory Processing

<table>
<thead>
<tr>
<th>HDFS Read</th>
<th>Query</th>
<th>ETL</th>
<th>ML Train</th>
</tr>
</thead>
</table>

Traditional GPU Processing

<table>
<thead>
<tr>
<th>HDFS Read</th>
<th>GPU Read</th>
<th>Query</th>
<th>GPU Read</th>
<th>CPU Write</th>
<th>GPU Read</th>
<th>ETL</th>
<th>CPU Write</th>
<th>GPU Read</th>
<th>ML Train</th>
</tr>
</thead>
</table>

RAPIDS

<table>
<thead>
<tr>
<th>Arrow Read</th>
<th>Query</th>
<th>ETL</th>
<th>ML Train</th>
</tr>
</thead>
</table>

25-100x Improvement
Less code
Language flexible
Primarily In-Memory

5-10x Improvement
More code
Language rigid
Substantially on GPU

50-100x Improvement
Same code
Language flexible
Primarily on GPU
Faster Speeds, Real-World Benefits

cuIO/cuDF - Load and Data Preparation

- 20 CPU Nodes: 2741 seconds
- 30 CPU Nodes: 1675 seconds
- 50 CPU Nodes: 715 seconds
- 100 CPU Nodes: 379 seconds
- DGX-2: 42 seconds
- 5x DGX-1: 19 seconds

XGBoost Machine Learning

- 20 CPU Nodes: 2290 seconds
- 30 CPU Nodes: 1956 seconds
- 50 CPU Nodes: 1999 seconds
- 100 CPU Nodes: 1948 seconds
- DGX-2: 169 seconds
- 5x DGX-1: 157 seconds

End-to-End

- 20 CPU Nodes: 8762 seconds
- 30 CPU Nodes: 6148 seconds
- 50 CPU Nodes: 3925 seconds
- 100 CPU Nodes: 3221 seconds
- DGX-2: 322 seconds
- 5x DGX-1: 213 seconds

Time in seconds (shorter is better)

- **cuIO/cuDF (Load and Data Prep)**
- **Data Conversion**
- **XGBoost**

Benchmark

- 200GB CSV dataset; Data prep includes joins, variable transformations

CPU Cluster Configuration

- CPU nodes (61 GiB memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration

- 5x DGX-1 on InfiniBand network
Faster Speeds, Real-World Benefits

Improving Over Time

Benchmark
200GB CSV dataset; Data prep includes joins, variable transformations

CPU Cluster Configuration
CPU nodes (61 GiB memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration
5x DGX-1 on InfiniBand network

Time in seconds (shorter is better)
- **cuIO/cuDF (Load and Data Prep)**
- **Data Conversion**
- **XGBoost**
Speed, UX, and Iteration
The Way to Win at Data Science

Winners are those who went through “more iterations” of the “loop of progress” -- going from an idea, to its implementation, to actionable results. So the winning teams are simply those able to run through this loop “faster”.

And this is were Keras gives you an edge.
RAPIDS Core
Open Source Data Science Ecosystem

Familiar Python APIs

Data Preparation → Model Training → Visualization

Pandas Analytics → Scikit-Learn Machine Learning → NetworkX Graph Analytics → PyTorch Chainer MxNet Deep Learning → Matplotlib/Plotly Visualization

CPU Memory

Dask
RAPIDS
End-to-End Accelerated GPU Data Science
Dask
RAPIDS
Scaling RAPIDS with Dask

Data Preparation → Model Training → Visualization

Dask

cuDF cuIO Analytics
cuML Machine Learning
cuGraph Graph Analytics
PyTorch Chainer MxNet Deep Learning
cuxfilter <> pyViz Visualization

GPU Memory

Apache Arrow
Why Dask?

PyData Native
- **Easy Migration**: Built on top of NumPy, Pandas, Scikit-Learn, etc.
- **Easy Training**: With the same APIs
- **Trusted**: With the same developer community

Deployable
- **HPC**: SLURM, PBS, LSF, SGE
- **Cloud**: Kubernetes
- **Hadoop/Spark**: Yarn

Easy Scalability
- Easy to install and use on a laptop
- Scales out to thousand-node clusters

Popular
- Most common parallelism framework today in the PyData and SciPy community
Why OpenUCX?

Bringing hardware accelerated communications to Dask

- TCP sockets are slow!
- UCX provides uniform access to transports (TCP, InfiniBand, shared memory, NVLink)
- Alpha Python bindings for UCX (ucx-py)
- Will provide best communication performance, to Dask based on available hardware on nodes/cluster

```
conda install -c conda-forge -c rapidsai \  
cudatoolkit=<CUDA version> ucx-proc=*/gpu ucx ucx-py
```
Benchmarks: Distributed cuDF Random Merge

Benchmarks: Distributed cuDF Random Merge

nuDF v0.11, UCX-PY 0.11

Running on NVIDIA DGX-2:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU 8168 @ 2.70GHz

Benchmark Setup:

DataFrames: Left/Right 1x int64 column key column, 1x int64 value columns

Merge: inner

30% of matching data balanced across each partition
Scale up with RAPIDS

RAPIDS and Others
Accelerated on single GPU
NumPy -> CuPy/PyTorch/...
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

PyData
NumPy, Pandas, Scikit-Learn, Numba and many more
Single CPU core
In-memory data
Scale out with RAPIDS + Dask with OpenUCX

RAPIDS and Others
Accelerated on single GPU
- NumPy -> CuPy/PyTorch/...
- Pandas -> cuDF
- Scikit-Learn -> cuML
- Numba -> Numba

RAPIDS + Dask with OpenUCX
Multi-GPU
- On single Node (DGX)
- Or across a cluster

PyData
- NumPy, Pandas, Scikit-Learn, Numba and many more
- Single CPU core
- In-memory data

Dask
- Multi-core and Distributed PyData
- NumPy -> Dask Array
- Pandas -> Dask DataFrame
- Scikit-Learn -> Dask-ML
- ... -> Dask Futures
cuDF
RAPIDS
GPU Accelerated data wrangling and feature engineering

Data Preparation → Model Training → Visualization

Dask

cuDF cuIO Analytics → cuML Machine Learning → cuGraph Graph Analytics → PyTorch Chainer MxNet Deep Learning → cuXfilter <> pyViz Visualization

GPU Memory → Apache Arrow
GPU-Accelerated ETL

The average data scientist spends 90+% of their time in ETL as opposed to training models
ETL - the Backbone of Data Science

libcuDF is...

CUDA C++ Library

- Low level library containing function implementations and C/C++ API
- Importing/exporting Apache Arrow in GPU memory using CUDA IPC
- CUDA kernels to perform element-wise math operations on GPU DataFrame columns
- CUDA sort, join, groupby, reduction, etc. operations on GPU DataFrames

```cpp
void some_function(cudf::column const* input, cudf::column * output, args...)
{
    // Do something with input
    // Produce output
}
```
ETL - the Backbone of Data Science

cuDF is...

Python Library

- A Python library for manipulating GPU DataFrames following the Pandas API
- Python interface to CUDA C++ library with additional functionality
- Creating GPU DataFrames from Numpy arrays, Pandas DataFrames, and PyArrow Tables
- JIT compilation of User-Defined Functions (UDFs) using Numba
Benchmarks: single-GPU Speedup vs. Pandas

GPU Speedup Over CPU

<table>
<thead>
<tr>
<th>nrows</th>
<th>10M</th>
<th>100M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge</td>
<td>870</td>
<td>430</td>
</tr>
<tr>
<td>Sort</td>
<td>300</td>
<td>140</td>
</tr>
<tr>
<td>GroupBy</td>
<td>150</td>
<td>28</td>
</tr>
</tbody>
</table>

cuDF v0.10, Pandas 0.24.2

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB
CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Benchmark Setup:

DataFrames: 2x int32 columns key columns, 3x int32 value columns

Merge: inner

GroupBy: count, sum, min, max calculated for each value column
ETL - the Backbone of Data Science

cuDF is not the end of the story

Data Preparation ➔ Model Training ➔ Visualization

Dask

cuDF cuIO Analytics ➔ cuML Machine Learning ➔ cuGraph Graph Analytics ➔ PyTorch Chainer MxNet Deep Learning ➔ cuXfilter <> pyViz Visualization

GPU Memory ➔ Apache Arrow
ETL - the Backbone of Data Science
String Support

Current v0.11 String Support

• Regular Expressions
• Element-wise operations
 • Split, Find, Extract, Cat, Typecasting, etc...
• String GroupBys, Joins
• Categorical columns fully on GPU
• Combining cuStrings into libcudf

Future v0.12+ String Support

• Extensive performance optimization
• More Pandas String API compatibility
• JIT-compiled String UDFs
• string columns in libcudf replacing custring
Extraction is the Cornerstone
culO for Faster Data Loading

• Follow Pandas APIs and provide >10x speedup

• CSV Reader - v0.2, CSV Writer v0.8
• Parquet Reader - v0.7, Parquet Writer v0.12
• ORC Reader - v0.7, ORC Writer v0.10
• JSON Reader - v0.8
• Avro Reader - v0.9

• GPU Direct Storage integration in progress for bypassing PCIe bottlenecks!

• Key is GPU-accelerating both parsing and decompression wherever possible

```python
1]: import pandas, cudf
def len(pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))
CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s
Wall time: 29.2 s
2]: 12748986

3]: %time len(cudf.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))
CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s
Wall time: 2.12 s
3]: 12748986

4]: ls -sh data/nyc/yellow_tripdata_2015-01.csv
1.9G  data/nyc/yellow_tripdata_2015-01.csv
```

Source: Apache Crail blog: SQL Performance: Part 1 - Input File Formats
ETL is not just DataFrames!
RAPIDS
Building bridges into the array ecosystem

Data Preparation → Model Training → Visualization

Dask

cuDF cuIO Analytics → cuML Machine Learning → cuGraph Graph Analytics → PyTorch Chainer MxNet Deep Learning → cuXfilter <-> pyViz Visualization

GPU Memory

Apache Arrow
Interoperability for the Win
DLPack and __cuda_array_interface__

PyTorch

mpi4py

mxnet

Chainer

CuPy

Numba
Interoperability for the Win

DLPack and __cuda_array_interface__

PYTorch

mpi4py

mxnet

RAPIDS

Open GPU Data Science

Numba

Chainer

CuPy
ETL - Arrays and DataFrames

Dask and CUDA Python arrays

- Scales NumPy to distributed clusters
- Used in climate science, imaging, HPC analysis up to 100TB size
- Now seamlessly accelerated with GPUs
Benchmark: single-GPU CuPy vs NumPy

Operation

GPU Speedup Over CPU

Elementwise FFT Array SlicingStencil Sum Matrix MultiplicationSVD Standard Deviation

Array Size

SVD Benchmark
Dask and CuPy Doing Complex Workflows
3.2 PETabytes IN LESS THAN 1 HOUR

Distributed GPU array | parallel reduction | using 76x GPUs

<table>
<thead>
<tr>
<th>Array size</th>
<th>Wall Time (data creation + compute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 PB (20M x 20M doubles)</td>
<td>54 min 51 s</td>
</tr>
</tbody>
</table>

Cluster configuration:
- 20x GCP instances, each instance has:
 - **CPU**: 1 VM socket (Intel Xeon CPU @ 2.30GHz), 2-core, 2 threads/core, 132GB mem, GbE ethernet, 950 GB disk
 - **GPU**: 4x NVIDIA Tesla P100-16GB-PCIe (total GPU DRAM across nodes 1.22 TB)

Software:
- Ubuntu 18.04, RAPIDS 0.5.1, Dask=1.1.1, Dask-Distributed=1.1.1, CuPY=5.2.0, CUDA 10.0.130

Also...Achievement Unlocked:

Petabyte Scale Data Analytics with Dask and CuPy

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single CPU Core</td>
<td>2hr 39min</td>
</tr>
<tr>
<td>Forty CPU Cores</td>
<td>11min 30s</td>
</tr>
<tr>
<td>One GPU</td>
<td>1min 37s</td>
</tr>
<tr>
<td>Eight GPUs</td>
<td>19s</td>
</tr>
</tbody>
</table>
ETL - Arrays and DataFrames
More Dask Awesomeness from RAPIDS

https://youtu.be/gV0cykgsTPM

https://youtu.be/R5CiXti_MWo
cuML
Machine Learning
More models more problems
Problem

Data sizes continue to grow

Massive Dataset

Histories / Distributions

Dimension Reduction
Feature Selection

Remove Outliers

Sampling

Better to start with as much data as possible and explore / preprocess to scale to performance needs.

Meet reasonable speed vs accuracy tradeoff

 Iterate. Cross Validate & Grid Search. Iterate some more.

Hours? Days?

Time Increases
ML Technology Stack

Python

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

Dask cuML
Dask cuDF
cuDF
Numpy

Thrust
Cub
cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas
Algorithms
GPU-accelerated Scikit-Learn

Classification / Regression

Inference

Clustering

Decomposition & Dimensionality Reduction

Time Series

Decision Trees / Random Forests
Linear Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machine Classification

Random forest / GBDT inference

K-Means
DBSCAN
Spectral Clustering

Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Kalman Filtering
ARIMA

Key:
- Preexisting
- NEW or enhanced for 0.11

Cross Validation

Hyper-parameter Tuning

More to come!
RAPIDS matches common Python APIs

CPU-Based Clustering

```python
from sklearn.datasets import make_moons
import pandas

X, y = make_moons(n_samples=int(1e2), noise=0.05, random_state=0)
X = pandas.DataFrame({'fea%d' % i: X[:, i] for i in range(X.shape[1])})

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)
dbscan.fit(X)
y_hat = dbscan.predict(X)
```
from sklearn.datasets import make_moons
import cudf

X, y = make_moons(n_samples=int(1e2), noise=0.05, random_state=0)

X = cudf.DataFrame({f'fea%d' % i: X[:, i] for i in range(X.shape[1])})

df = cudf.DataFrame({f'fea%d' % i: X[:, i] for i in range(X.shape[1])})

df = cudf.DataFrame({f'fea%d' % i: X[:, i] for i in range(X.shape[1])})

df = cudf.DataFrame({f'fea%d' % i: X[:, i] for i in range(X.shape[1])})

from cuml import DBSCAN
dbscan = DBSCAN(eps = 0.3, min_samples = 5)
dbscan.fit(X)
y_hat = dbscan.predict(X)
Benchmarks: single-GPU cuML vs scikit-learn
cuML’s Forest Inference Library accelerates prediction (inference) for random forests and boosted decision trees:

- Works with existing saved models (XGBoost, LightGBM, scikit-learn RF cuML RF soon)
- Lightweight Python API
- Single V100 GPU can infer up to 34x faster than XGBoost dual-CPU node
- Over 100 million forest inferences per sec (with 1000 trees) on a DGX-1
Road to 1.0

December 2019 - RAPIDS 0.11

<table>
<thead>
<tr>
<th>cuML</th>
<th>Single-GPU</th>
<th>Multi-GPU</th>
<th>Multi-Node-Multi-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Boosted Decision Trees (GBDT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic Regression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-NN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBSCAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA & Holt-Winters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-SNE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Road to 1.0

March 2020 - RAPIDS 0.13

<table>
<thead>
<tr>
<th>cuML</th>
<th>Single-GPU</th>
<th>Multi-Node-Multi-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Boosted Decision Trees (GBDT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Forest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Means</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBSCAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA & Holt-Winters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-SNE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cuGraph
Graph Analytics
More connections more insights

- Data Preparation
- Model Training
- Visualization

- Dask
- cuDF cuIO Analytics
- cuML Machine Learning
- cuGraph Graph Analytics
- PyTorch Chainer MxNet Deep Learning
- cuXfilter <> pyViz Visualization

- GPU Memory
- Apache Arrow
GOALS AND BENEFITS OF CUGRAPH
Focus on Features and User Experience

Breakthrough Performance
• Up to 500 million edges on a single 32GB GPU
• Multi-GPU support for scaling into the billions of edges

Multiple APIs
• Python: Familiar NetworkX-like API
• C/C++: lower-level granular control for application developers

Seamless Integration with cuDF and cuML
• Property Graph support via DataFrames

Growing Functionality
• Extensive collection of algorithm, primitive, and utility functions
nvGRAPH has been Opened Sourced and integrated into cuGraph. A legacy version is available in a RAPIDS GitHub repo

* Gunrock is from UC Davis
Algorithms

GPU-accelerated NetworkX

Community
- Louvain
- Subgraph Extraction
- KCore and KCore Number

Components
- Weakly Connected Components
- Strongly Connected Components

Link Analysis
- Page Rank (Multi-GPU)
- Personal Page Rank
- Katz
- Jaccard
- Weighted Jaccard
- Overlap Coefficient

Link Prediction

Traversal
- Single Source Shortest Path (SSSP)
- Breadth First Search (BFS)

Structure
- Triangle Counting
- COO-to-CSR (Multi-GPU)
- Transpose

Query Language

Multi-GPU

Utilities

More to come!
Benchmarks: single-GPU cuGraph vs NetworkX

Performance Speedup: cuGraph vs NetworkX

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>preferentialAttachment</td>
<td>100,000</td>
<td>999,970</td>
</tr>
<tr>
<td>caidaRouterLevel</td>
<td>192,244</td>
<td>1,218,132</td>
</tr>
<tr>
<td>coAuthorsDBLP</td>
<td>299,067</td>
<td>299,067</td>
</tr>
<tr>
<td>dblp-2010</td>
<td>326,186</td>
<td>1,615,400</td>
</tr>
<tr>
<td>citationCiteseer</td>
<td>268,495</td>
<td>2,313,294</td>
</tr>
<tr>
<td>coPapersDBLP</td>
<td>540,486</td>
<td>30,491,458</td>
</tr>
<tr>
<td>coPapersCiteseer</td>
<td>434,102</td>
<td>32,073,440</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>1,696,415</td>
<td>22,190,596</td>
</tr>
</tbody>
</table>
Benchmarks: cyLouvain and SciPy PageRank
Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

<table>
<thead>
<tr>
<th>HiBench Scale</th>
<th>Vertices</th>
<th>Edges</th>
<th>CSV File (GB)</th>
<th># of GPUs</th>
<th># of CPU Threads</th>
<th>PageRank for 3 Iterations (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huge</td>
<td>5,000,000</td>
<td>198,000,000</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>BigData</td>
<td>50,000,000</td>
<td>1,980,000,000</td>
<td>34</td>
<td>3</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>BigData x2</td>
<td>100,000,000</td>
<td>4,000,000,000</td>
<td>69</td>
<td>6</td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>BigData x4</td>
<td>200,000,000</td>
<td>8,000,000,000</td>
<td>146</td>
<td>12</td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td>BigData x8</td>
<td>400,000,000</td>
<td>16,000,000,000</td>
<td>300</td>
<td>16</td>
<td></td>
<td>31.8</td>
</tr>
<tr>
<td>BigData x8</td>
<td>400,000,000</td>
<td>16,000,000,000</td>
<td>300</td>
<td>800*</td>
<td>5760*</td>
<td>96 mins!</td>
</tr>
</tbody>
</table>

*BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX ⇒ 96 mins!
Road to 1.0

December 2019 - RAPIDS 0.11

<table>
<thead>
<tr>
<th>cuGraph</th>
<th>Single-GPU</th>
<th>Multi-GPU</th>
<th>Multi-Node-Multi-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard and Weighted Jaccard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page Rank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Page Rank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Counting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgraph Extraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katz Centrality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness Centrality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected Components (Weak and Strong)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louvain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Clustering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Cores</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Road to 1.0

March 2020 - RAPIDS 0.13

<table>
<thead>
<tr>
<th>cuGraph</th>
<th>Single-GPU</th>
<th>Multi-Node-Multi-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard and Weighted Jaccard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Page Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Counting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgraph Extraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katz Centrality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness Centrality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected Components (Weak and Strong)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louvain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Clustering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-Cores</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cuSpatial
cuSpatial Technology Stack

- Python
- Cython
- cuSpatial
- cuDF C++
- Thrust
- CUDA
Breakthrough Performance & Ease of Use

- Up to 1000x faster than CPU spatial libraries
- Python and C++ APIs for maximum usability and integration

Growing Functionality

- Extensive collection of algorithm, primitive, and utility functions for spatial analytics

Seamless Integration into RAPIDS

- cuDF for data loading, cuGraph for routing optimization, and cuML for clustering are just a few examples

cuSpatial
cuSpatial
0.11 and Beyond

<table>
<thead>
<tr>
<th>Layer</th>
<th>0.11 Functionality</th>
<th>Functionality Roadmap (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level Analytics</td>
<td>C++ Library w. Python bindings enabling distance, speed, trajectory similarity, trajectory clustering</td>
<td>C++ Library w. Python bindings for additional spatio-temporal trajectory clustering, acceleration, dwell-time, salient locations, trajectory anomaly detection, origin destination, etc.</td>
</tr>
<tr>
<td>Graph layer</td>
<td>cuGraph</td>
<td>Map matching, Djikstra algorithm, Routing</td>
</tr>
<tr>
<td>Query layer</td>
<td>Spatial Window</td>
<td>Nearest Neighbor,KNN, Spatiotemporal range search and joins</td>
</tr>
<tr>
<td>Index layer</td>
<td></td>
<td>Grid, Quad Tree, R-Tree, Geohash, Voronoi Tessellation</td>
</tr>
<tr>
<td>Geo-operations</td>
<td>Point in polygon (PIP), Haversine distance, Hausdorff distance, lat-lon to xy transformation</td>
<td>Line intersecting polygon, Other distance functions, Polygon intersection, union</td>
</tr>
<tr>
<td>Geo-representation</td>
<td>Shape primitives, points, polylines, polygons</td>
<td>Additional shape primitives</td>
</tr>
</tbody>
</table>
cuSpatial

Performance at a Glance

<table>
<thead>
<tr>
<th>cuSpatial Operation</th>
<th>Input data</th>
<th>cuSpatial Runtime</th>
<th>Reference Runtime</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-in-Polygon Test</td>
<td>1.3+ million vehicle point locations and 27 Region of Interests</td>
<td>1.11 ms (C++)</td>
<td>334 ms (C++, optimized serial)</td>
<td>301X (C++)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50 ms (Python)</td>
<td>130468.2 ms (python Shapely API, serial)</td>
<td>86,978X (Python)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Nvidia Titan V]</td>
<td>[Intel i7-7800X]</td>
<td></td>
</tr>
<tr>
<td>Haversine Distance Computation</td>
<td>13+ million Monthly NYC taxi trip pickup and drop-off locations</td>
<td>7.61 ms (Python)</td>
<td>416.9 ms (Numba)</td>
<td>54.7X (Python)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Nvidia T4]</td>
<td>[Nvidia T4]</td>
<td></td>
</tr>
<tr>
<td>Hausdorff Distance Computation (for clustering)</td>
<td>52,800 trajectories with 1.3+ million points</td>
<td>13.5s [Quadro V100]</td>
<td>19227.5s (Python SciPy API, serial)</td>
<td>1,400X (Python)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[Intel i7-6700K]</td>
<td></td>
</tr>
</tbody>
</table>
Community
Ecosystem Partners

CONTRIBUTORS

ADOPTERS

OPEN SOURCE
Building on top of RAPIDS
A bigger, better, stronger ecosystem for all

nuclio

High-Performance Serverless event and data processing that utilizes RAPIDS for GPU Acceleration

blazingSQL

GPU accelerated SQL engine built on top of RAPIDS

Streamz

Distributed stream processing using RAPIDS and Dask
BlazingSQL

RAPIDS

AI

blazingSQL
SQL Queries

cuDF
Data Preparation

cuML
Machine Learning

cuGRAPH
Graph Analytics

Apache Arrow on GPU

TPC-H SF1000 Query Times - GCS Storage

Load Time
Query Execution Time
```python
from blazingsql import BlazingContext
import cudf

bc = BlazingContext()

bc.s('bsql', bucket_name='bsql', access_key_id='<access_key>', secret_key='<secret_key>')[

bc.create_table('orders', s3://bsql/orders/)

gdf = bc.sql('select * from orders').get()
```
RAPIDS + Nuclio
Serverless meets GPUs

https://towardsdatascience.com/python-pandas-at-extreme-performance-912912b1047c
Deploy RAPIDS Everywhere
Focused on robust functionality, deployment, and user experience

Integration with major cloud providers
Both containers and cloud specific machine instances
Support for Enterprise and HPC Orchestration Layers
5 Steps to getting started with RAPIDS

1. **Install** RAPIDS on using [Docker](#), [Conda](#), or [Colab](#)
2. **Explore** our **walk through videos**, blog content, our [github](#), the **tutorial notebooks**, and our **examples workflows**,
3. **Build** your own data science workflows.
4. **Join** our community conversations on [Slack](#), [Google](#), and [Twitter](#)
5. **Contribute** back. Don’t forget to ask and answer questions on [Stack Overflow](#)
Easy Installation

Interactive Installation Guide

RAPIDS RELEASE SELECTOR

RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you've met the required **prerequisites** above and see the details below.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>Conda</th>
<th>Docker + Examples</th>
<th>Docker + Dev Env</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELEASE</td>
<td>Stable (0.10)</td>
<td>Nightly (0.11a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACKAGES</td>
<td>All Packages</td>
<td>cuDF</td>
<td>cuML</td>
<td>cuGraph</td>
</tr>
<tr>
<td>LINUX</td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 18.04</td>
<td>CentOS 7</td>
<td></td>
</tr>
<tr>
<td>PYTHON</td>
<td>Python 3.6</td>
<td></td>
<td>Python 3.7</td>
<td></td>
</tr>
<tr>
<td>CUDA</td>
<td>CUDA 9.2</td>
<td>CUDA 10.0</td>
<td>CUDA 10.1.2</td>
<td></td>
</tr>
<tr>
<td>COMMAND</td>
<td><code>conda install -c rapidsai -c nvidia -c conda-forge -c defaults rapids=0.10 python=3.6</code></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Deprecated**

New

Easy Installation

Interactive Installation Guide

RAPIDS RELEASE SELECTOR

RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you've met the required prerequisites above and see the details below.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>Conda</th>
<th>Docker + Examples</th>
<th>Docker + Dev Env</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELEASE</td>
<td>Stable (0.10)</td>
<td>Nightly (0.11a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACKAGES</td>
<td>All Packages</td>
<td>cuDF</td>
<td>cuML</td>
<td>cuGraph</td>
</tr>
<tr>
<td>LINUX</td>
<td>Ubuntu 16.04</td>
<td>Ubuntu 18.04</td>
<td>CentOS 7</td>
<td></td>
</tr>
<tr>
<td>PYTHON</td>
<td>Python 3.6</td>
<td></td>
<td>Python 3.7</td>
<td></td>
</tr>
<tr>
<td>CUDA</td>
<td>CUDA 9.2</td>
<td>CUDA 10.0</td>
<td>CUDA 10.1.2</td>
<td></td>
</tr>
<tr>
<td>COMMAND</td>
<td><code>conda install -c rapidsai -c nvidia -c conda-forge -c defaults rapids=0.10 python=3.6</code></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Deprecated**

New
Explore: RAPIDS Github

https://github.com/rapidsai
Explore: RAPIDS Docs
Improved and easier to use!

https://docs.rapids.ai
Explore: RAPIDS Code and Blogs

Check out our code and how we use it

https://github.com/rapidsai

https://medium.com/rapids-ai
Explore: Notebooks Contrib

Notebooks Contrib Repo has tutorials and examples, and various E2E demos. RAPIDS Youtube channel has explanations, code walkthroughs and use cases.

Intermediate Notebooks:

<table>
<thead>
<tr>
<th>Folder</th>
<th>Notebook Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro_tutorials</td>
<td>05_Introduction_to_DaskcuDF</td>
<td>This notebook shows how to work with cuDF DataFrames distributed across multiple GPUs using Dask.</td>
</tr>
<tr>
<td>intro_tutorials</td>
<td>06_Introduction_to_Supervised_Learning</td>
<td>This notebook shows how to do GPU accelerated Supervised Learning in RAPIDS.</td>
</tr>
<tr>
<td>intro_tutorials</td>
<td>07_Introduction_to_XGBoost</td>
<td>This notebook shows how to work with GPU accelerated XGBoost in RAPIDS.</td>
</tr>
<tr>
<td>intro_tutorials</td>
<td>08_Introduction_to_Dask_XGBoost</td>
<td>This notebook shows how to work with Dask XGBoost in RAPIDS.</td>
</tr>
<tr>
<td>intro_tutorials</td>
<td>09_Introduction_to_Dimensionality_Reduction</td>
<td>This notebook shows how to do GPU accelerated Dimensionality Reduction in RAPIDS.</td>
</tr>
<tr>
<td>intro_tutorials</td>
<td>10_Introduction_to_Clustering</td>
<td>This notebook shows how to do GPU accelerated Clustering in RAPIDS.</td>
</tr>
</tbody>
</table>

Examples:

<table>
<thead>
<tr>
<th>Folder</th>
<th>Notebook Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>examples</td>
<td>DBSCAN_Demo_FULL</td>
<td>This notebook shows how to use DBSCAN algorithm and its GPU accelerated implementation present in RAPIDS.</td>
</tr>
<tr>
<td>examples</td>
<td>Dask_with_cuDF_and_XGBoost</td>
<td>In this notebook we show how to quickly setup Dask and train an XGBoost model using cuDF.</td>
</tr>
</tbody>
</table>
Join the Conversation

Google Groups Docker Hub Slack Channel Stack Overflow
Contribute Back

Issues, feature requests, PRs, Blogs, Tutorials, Videos, QA...bring your best!
Getting Started
RAPIDS Docs
New, improved, and easier to use

https://docs.rapids.ai
RAPIDS Docs

Easier than ever to get started with cuDF

10 Minutes to cuDF

Modeled after 10 Minutes to Pandas, this is a short introduction to cuDF, geared mainly for new users.

```python
[1]:
    import os
    import numpy as np
    import pandas as pd
    import cudf
    np.random.seed(123)

    # Portions of this were borrowed from the
    # cuDF cheatsheet, existing cuDF documentation,
    # and 10 Minutes to Pandas.
    # Created November, 2018.

Object Creation

Creating a Series.

```
RAPIDS
How do I get the software?

- https://github.com/rapidsai
- https://anaconda.org/rapidsai/

- https://hub.docker.com/r/rapidsai/rapidsai/
Join the Movement
Everyone can help!

APACHE ARROW
https://arrow.apache.org/
@ApacheArrow

RAPIDS
https://rapids.ai
@RAPIDSAI

Dask
https://dask.org
@Dask_dev

GPU Open Analytics Initiative
http://gpuopenanalytics.com/
@GPUOAI

Integrations, feedback, documentation support, pull requests, new issues, or code donations welcomed!
THANK YOU

Joshua Patterson
joshuap@nvidia.com

@datametrician