Why GPUs for Data Science?

Numerous hardware advantages

- Thousands of cores with up to ~20 TeraFlops of general purpose compute performance
- Up to 1.5 TB/s of memory bandwidth
- Hardware interconnects for up to 600 GB/s bidirectional GPU <--> GPU bandwidth
- Can scale up to 16x GPUs in a single node

Almost never run out of compute relative to memory bandwidth!
What is RAPIDS?
End-to-End GPU Accelerated Data Science

Data Preparation/ETL ➢ cuDF
 ➢ GPU-accelerated ETL functions
 ➢ Tracks pandas and other common PyData APIs
 ➢ Dask + UCX integration for scaling

Analytics/ML/Graph ➢ cuML
 ➢ GPU-native ML library, including XGBoost, FIL, HPO, and more

Visualisation ➢ cuxfilter
 ➢ GPU-accelerated cross-filtering
 ➢ pyViz integration
 ➢ Plotly Dash, Bokeh, Datashader, HoloViews, hvPlot

cuGraph
 ➢ GPU graph analytics, including TSP, PageRank, and more

Domain-Specific Libraries

CLX + Morpheus
 Cyber log processing + anomaly detection

cuStreamz
 Streaming analytics

cuSignal
 Signals processing

cuCIM
 Computer vision & image processing primitives

...and more!

cuSpatial
 Spatial analytics

node-RAPIDS
 Bindings for node.js
Overview of Changes: RAPIDS 21.06 Release

- **RAPIDS+Dask** Updated memory spilling (JIT_UNSPILL) to use compatibility mode; added capability to benchmarks; added support for CUDA Async Memory Resource; UCX usability improvements including clean endpoint shutdown and documentation;

- **cuDF** Additional support for fixed-point decimal types in Python; more groupby and join aggregations; more functionalities for list and string type operations in Python; expanded dictionary type operations in C++;

- **cuML** New HDBSCAN model; major improvements to Random Forest; single-linkage hierarchical clustering; sample weights for logistic regression; major improvements to build system;

- **XGBoost** 1.4.2 ships with 21.06, including improvements to Dask integration and prediction functions;

- **cuGraph** Single and Multi GPU Weakly Connected Components; graph batching for C++; multi-column support; Bipartite graph structures; continued improving graph primitives for performance

- **CLX** URL processing for DGA detection; added Multiclass Sequence Classifier; enhanced Lightweight Online Detector of Anomalies

- **cuCIM** Multiple GPU accelerated computer vision and image processing primitives for N dimensional images

- **Morpheus** using RAPIDS libraries; early access available on June 15th 2021
cuDF Updates: Deep Dive

Release 21.06

Features added in 21.06

- Decimal data type is now supported for csv and orc writer functions in Python
- Shift and multiple cumulative operations for groupby aggregation are now available
- Added getitem and concatenate_list_elements functions to list in C++
- Continuing refactoring and improving string support

Planned Upcoming Features

- Conditional Joins
- Decimal support for additional cuIO functions
- ORC GDS and struct support
- Update to Arrow 4.0.1
- Support multiple inputs in json reader
cuML Updates: Deep Dive
Release 21.06

Features added in 21.06

▸ New Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm
▸ Fast Fourier Transform accelerated t-Stochastic Neighborhood Embedding (FIt-SNE)
▸ New backend to use cuML’s Forest Inference Library (FIL) in the NVIDIA Triton Inference Server.
▸ Added ColumnTransformer and FunctionTransformer functions to cuML’s preprocessing module
▸ New Random Forest backend is the default both classification and regression models - provides better performance and accuracy
▸ Many model-specific improvements! ARIMA memory improvements, deterministic mode for UMAP, sample weights for logistic regression,

Planned Upcoming Features

▸ Further enhancements for Random Forest, Forest Inference Library and HDBSCAN
▸ Sparse Logistic Regression
▸ Weighted multi-node multi-gpu KMeans
cuGraph Updates: Deep Dive
Release 21.06

Features added in 21.06

▸ New Multi GPU implementation of Weakly Connected Components
▸ Graph Batching functionality added to libcugraph
▸ Multi-column support for all cuGraph algorithms
▸ Bipartite graph structures are now supported in cuGraph
▸ New padded result set for Random Walk

Planned Upcoming Features

▸ Depth limit functionality on traversal algorithms
▸ Batch Random Walk
▸ Multi-Seed Breadth First Search
▸ Aggregated Traversal Graph Prim
Join the Conversation

GOOGLE GROUPS
https://groups.google.com/forum/#!forum/rapidsai

DOCKER HUB
https://hub.docker.com/r/rapidsai/rapidsai

SLACK CHANNEL
https://rapids-goai.slack.com/join

STACK OVERFLOW
https://stackoverflow.com/tags/rapids