21.12 Release
Why GPUs for Data Science?

Numerous hardware advantages

- Thousands of cores with up to ~20 TeraFlops of general purpose compute performance
- Up to 1.5 TB/s of memory bandwidth
- Hardware interconnects for up to 600 GB/s bidirectional GPU <--> GPU bandwidth
- Can scale up to 16x GPUs in a single node

Almost never run out of compute relative to memory bandwidth!
What is RAPIDS?
End-to-End GPU Accelerated Data Science

Data Preparation/ETL
- **cuDF**
 - GPU-accelerated ETL functions
 - Tracks Pandas and other common PyData APIs
 - Dask + UCX integration for scaling

Analytics/ML/Graph
- **RAPIDS ML**
 - GPU-native cuML library, plus XGBoost, FIL, HPO, and more
 - **cuGraph**
 - GPU graph analytics, including TSP, PageRank, and more

Visualization
- **cuxfilter**
 - GPU-accelerated cross-filtering
 - **pyViz integration**
 - Plotly Dash, Bokeh, Datashader, HoloViews, hvPlot

Domain-Specific Libraries
- **CLX + Morpheus**
 - Cyber log processing + anomaly detection
- **cuStreamz**
 - Streaming analytics
- **cuSignal**
 - Signals processing
- **cuCIM**
 - Computer vision & image processing primitives
- **cuSpatial**
 - Spatial analytics
- **node-RAPIDS**
 - Bindings for node.js

...and more!
Overview of Changes: RAPIDS 21.12 Release

- **RAPIDS** CUDA enhanced compatibility is now supported by RAPIDS-users can now use newer CUDA binaries or runtimes without updating their CUDA driver version (450.80.02+).
- **RAPIDS+Dask** Support for spilling on demand; Deprecation of support for UCX version less than 1.11.1
- **cuDF** 128 bit Decimal support; Groupby diff; Map support for ORC writer; String now has support for istitle; mixed numeric type support in to_dlpack; Resample function added to cuDF; pandas-like UDF interface with DataFrame and Series.apply;
- **cuML** New LinearSVC and LinearSVR models; Dask-SQL support for cuML models; exogenous variable support in ARIMA; KL divergence exposed in TSNE;
- **cuGraph** K-core for undirected graphs for single and multiple GPUs; graph primitive filter for edges; transpose_edgelist and symmetrize_edgelist and count number of self loops and multi-edges in a graph in libcugraph; Improved performance for NetworkX inputs; Initial implementation of Multi GPU HITS;
- **Dask-SQL** Experimental GPU support for Dask-SQL, bringing the power of RAPIDS to SQL
cuDF Updates: Deep Dive
Release 21.12

Features added in 21.12

▸ 128 bit Decimal support in libcudf
▸ Diff is now supported for groupby
▸ Map support for ORC writer
▸ Support for Series.str.istitle
▸ pandas-like UDF interface with DataFrame and Series.apply
▸ Handling of mixed numeric types supported in to_dlpck
▸ Resample function added to cuDF will allow users to resample time series data
▸ cuDF’s Grouper function now supports grouping via time frequency

Planned Upcoming Features

▸ Expanded support for 128 bit decimal types
▸ Nested type support for JSON reader
▸ Decimal support for Dask cuDF Parquet reader
▸ Refactored hash join implementation
cuML Updates: Deep Dive

Release 21.12

Features added in 21.12
- Support for LinearSVM using QN solvers, LinearSVC and LinearSVR models
- Ability to use Dask-SQL with cuML models
- ARIMA now supports exogenous variables
- KL divergence exposed in TSNE

Planned Upcoming Features
- Multiple improvements to T-Distributed Stochastic Neighbor Embedding algorithm to improve accuracy
- Enhancements to Random Forest Algorithm
- Symbolic classification and regression models
cuGraph Updates: Deep Dive

Release 21.12

Features added in 21.12

- Implemented K-core for undirected graphs for Single and Multi GPUs
- Initial implementation of Multi GPU HITS
- Initial version of node2vec in C++/CUDA for graph sampling, Python wrapper coming soon
- New graph filter for the edges, extract_if_e, in libcugraph
- Implemented transpose_edgelist and symmetrize_edgelist in libcugraph
- Added the ability to count number of self loops and multi-edges in a graph, in libcugraph
- Improved performance when a NetworkX graph is passed in

Planned Upcoming Features

- Multi-GPU graph primitives for Triangle Counting
- More algorithms poerted to using primitives and scaling to Multi GPUs
- Ability for user to write custom algorithms using the graph primitives
- Multi GPU neighborhood sampling
- Property Graphs
Join the Conversation

GOOGLE GROUPS
https://groups.google.com/forum/#!forum/rapidsai

DOCKER HUB
https://hub.docker.com/r/rapidsai/rapidsai

SLACK CHANNEL
https://rapids-goi-slack.com/join

STACK OVERFLOW
https://stackoverflow.com/tags/rapids
THANK YOU

@RAPIDSSai

RAPIDS