Fits a DBSCAN model on an input feature matrix and outputs the labels and core_sample_indices.
More...
|
void | ML::Dbscan::fit (const raft::handle_t &handle, float *input, int n_rows, int n_cols, float eps, int min_pts, cuvs::distance::DistanceType metric, int *labels, int *core_sample_indices=nullptr, float *sample_weight=nullptr, size_t max_bytes_per_batch=0, EpsNnMethod eps_nn_method=BRUTE_FORCE, int verbosity=CUML_LEVEL_INFO, bool opg=false) |
|
void | ML::Dbscan::fit (const raft::handle_t &handle, double *input, int n_rows, int n_cols, double eps, int min_pts, cuvs::distance::DistanceType metric, int *labels, int *core_sample_indices=nullptr, double *sample_weight=nullptr, size_t max_bytes_per_batch=0, EpsNnMethod eps_nn_method=BRUTE_FORCE, int verbosity=CUML_LEVEL_INFO, bool opg=false) |
|
void | ML::Dbscan::fit (const raft::handle_t &handle, float *input, int64_t n_rows, int64_t n_cols, float eps, int min_pts, cuvs::distance::DistanceType metric, int64_t *labels, int64_t *core_sample_indices=nullptr, float *sample_weight=nullptr, size_t max_bytes_per_batch=0, EpsNnMethod eps_nn_method=BRUTE_FORCE, int verbosity=CUML_LEVEL_INFO, bool opg=false) |
|
void | ML::Dbscan::fit (const raft::handle_t &handle, double *input, int64_t n_rows, int64_t n_cols, double eps, int min_pts, cuvs::distance::DistanceType metric, int64_t *labels, int64_t *core_sample_indices=nullptr, double *sample_weight=nullptr, size_t max_bytes_per_batch=0, EpsNnMethod eps_nn_method=BRUTE_FORCE, int verbosity=CUML_LEVEL_INFO, bool opg=false) |
|
Fits a DBSCAN model on an input feature matrix and outputs the labels and core_sample_indices.
- Parameters
-
[in] | handle | cuml handle to use across the algorithm |
[in] | input | row-major input feature matrix or distance matrix |
[in] | n_rows | number of samples in the input feature matrix |
[in] | n_cols | number of features in the input feature matrix |
[in] | eps | epsilon value to use for epsilon-neighborhood determination |
[in] | min_pts | minimum number of points to determine a cluster |
[in] | metric | metric type (or precomputed) |
[out] | labels | (size n_rows) output labels array |
[out] | core_sample_indices | (size n_rows) output array containing the indices of each core point. If the number of core points is less than n_rows, the right will be padded with -1. Setting this to NULL will prevent calculating the core sample indices |
[in] | sample_weight | (size n_rows) input array containing the weight of each sample to be taken instead of a plain sum to fulfill the min_pts criteria for core points. NULL will default to weights of 1 for all samples |
[in] | max_bytes_per_batch | the maximum number of megabytes to be used for each batch of the pairwise distance calculation. This enables the trade off between memory usage and algorithm execution time. |
[in] | eps_nn_method | method for computing epsilon neighborhood |
[in] | verbosity | verbosity level for logging messages during execution |
[in] | opg | whether we are running in a multi-node multi-GPU context |
◆ fit() [1/4]
void ML::Dbscan::fit |
( |
const raft::handle_t & |
handle, |
|
|
double * |
input, |
|
|
int |
n_rows, |
|
|
int |
n_cols, |
|
|
double |
eps, |
|
|
int |
min_pts, |
|
|
cuvs::distance::DistanceType |
metric, |
|
|
int * |
labels, |
|
|
int * |
core_sample_indices = nullptr , |
|
|
double * |
sample_weight = nullptr , |
|
|
size_t |
max_bytes_per_batch = 0 , |
|
|
EpsNnMethod |
eps_nn_method = BRUTE_FORCE , |
|
|
int |
verbosity = CUML_LEVEL_INFO , |
|
|
bool |
opg = false |
|
) |
| |
◆ fit() [2/4]
void ML::Dbscan::fit |
( |
const raft::handle_t & |
handle, |
|
|
double * |
input, |
|
|
int64_t |
n_rows, |
|
|
int64_t |
n_cols, |
|
|
double |
eps, |
|
|
int |
min_pts, |
|
|
cuvs::distance::DistanceType |
metric, |
|
|
int64_t * |
labels, |
|
|
int64_t * |
core_sample_indices = nullptr , |
|
|
double * |
sample_weight = nullptr , |
|
|
size_t |
max_bytes_per_batch = 0 , |
|
|
EpsNnMethod |
eps_nn_method = BRUTE_FORCE , |
|
|
int |
verbosity = CUML_LEVEL_INFO , |
|
|
bool |
opg = false |
|
) |
| |
◆ fit() [3/4]
void ML::Dbscan::fit |
( |
const raft::handle_t & |
handle, |
|
|
float * |
input, |
|
|
int |
n_rows, |
|
|
int |
n_cols, |
|
|
float |
eps, |
|
|
int |
min_pts, |
|
|
cuvs::distance::DistanceType |
metric, |
|
|
int * |
labels, |
|
|
int * |
core_sample_indices = nullptr , |
|
|
float * |
sample_weight = nullptr , |
|
|
size_t |
max_bytes_per_batch = 0 , |
|
|
EpsNnMethod |
eps_nn_method = BRUTE_FORCE , |
|
|
int |
verbosity = CUML_LEVEL_INFO , |
|
|
bool |
opg = false |
|
) |
| |
◆ fit() [4/4]
void ML::Dbscan::fit |
( |
const raft::handle_t & |
handle, |
|
|
float * |
input, |
|
|
int64_t |
n_rows, |
|
|
int64_t |
n_cols, |
|
|
float |
eps, |
|
|
int |
min_pts, |
|
|
cuvs::distance::DistanceType |
metric, |
|
|
int64_t * |
labels, |
|
|
int64_t * |
core_sample_indices = nullptr , |
|
|
float * |
sample_weight = nullptr , |
|
|
size_t |
max_bytes_per_batch = 0 , |
|
|
EpsNnMethod |
eps_nn_method = BRUTE_FORCE , |
|
|
int |
verbosity = CUML_LEVEL_INFO , |
|
|
bool |
opg = false |
|
) |
| |