Classes | Enumerations | Enumerator | Functions | Variables
: structure holding parameters used by random projection model

Classes

struct  ML::paramsRPROJ
 
struct  ML::rand_mat< math_t >
 

Enumerations

enum  ML::random_matrix_type { ML::unset , ML::dense , ML::sparse }
 

Functions

 ML::rand_mat< math_t >::rand_mat (cudaStream_t stream)
 
 ML::rand_mat< math_t >::~rand_mat ()
 
void ML::rand_mat< math_t >::reset ()
 
template<typename math_t >
void ML::RPROJfit (const raft::handle_t &handle, rand_mat< math_t > *random_matrix, paramsRPROJ *params)
 
template<typename math_t >
void ML::RPROJtransform (const raft::handle_t &handle, math_t *input, rand_mat< math_t > *random_matrix, math_t *output, paramsRPROJ *params)
 
size_t ML::johnson_lindenstrauss_min_dim (size_t n_samples, double eps)
 

Variables

int ML::paramsRPROJ::n_samples
 
int ML::paramsRPROJ::n_features
 
int ML::paramsRPROJ::n_components
 
double ML::paramsRPROJ::eps
 
bool ML::paramsRPROJ::gaussian_method
 
double ML::paramsRPROJ::density
 
bool ML::paramsRPROJ::dense_output
 
int ML::paramsRPROJ::random_state
 
rmm::device_uvector< math_t > ML::rand_mat< math_t >::dense_data
 
rmm::device_uvector< int > ML::rand_mat< math_t >::indices
 
rmm::device_uvector< int > ML::rand_mat< math_t >::indptr
 
rmm::device_uvector< math_t > ML::rand_mat< math_t >::sparse_data
 
cudaStream_t ML::rand_mat< math_t >::stream
 
random_matrix_type ML::rand_mat< math_t >::type
 

Detailed Description

Parameters
n_samplesNumber of samples
n_featuresNumber of features (original dimension)
n_componentsNumber of components (target dimension)
epserror tolerance used to decide automatically of n_components
gaussian_methodboolean describing random matrix generation method
densityDensity of the random matrix
dense_outputboolean describing sparsity of transformed matrix
random_stateseed used by random generator

Enumeration Type Documentation

◆ random_matrix_type

Enumerator
unset 
dense 
sparse 

Function Documentation

◆ johnson_lindenstrauss_min_dim()

size_t ML::johnson_lindenstrauss_min_dim ( size_t  n_samples,
double  eps 
)

◆ rand_mat()

template<typename math_t >
ML::rand_mat< math_t >::rand_mat ( cudaStream_t  stream)
inline

◆ reset()

template<typename math_t >
void ML::rand_mat< math_t >::reset ( )
inline

◆ RPROJfit()

template<typename math_t >
void ML::RPROJfit ( const raft::handle_t &  handle,
rand_mat< math_t > *  random_matrix,
paramsRPROJ params 
)

◆ RPROJtransform()

template<typename math_t >
void ML::RPROJtransform ( const raft::handle_t &  handle,
math_t *  input,
rand_mat< math_t > *  random_matrix,
math_t *  output,
paramsRPROJ params 
)

◆ ~rand_mat()

template<typename math_t >
ML::rand_mat< math_t >::~rand_mat ( )
inline

Variable Documentation

◆ dense_data

template<typename math_t >
rmm::device_uvector<math_t> ML::rand_mat< math_t >::dense_data

◆ dense_output

bool ML::paramsRPROJ::dense_output

◆ density

double ML::paramsRPROJ::density

◆ eps

double ML::paramsRPROJ::eps

◆ gaussian_method

bool ML::paramsRPROJ::gaussian_method

◆ indices

template<typename math_t >
rmm::device_uvector<int> ML::rand_mat< math_t >::indices

◆ indptr

template<typename math_t >
rmm::device_uvector<int> ML::rand_mat< math_t >::indptr

◆ n_components

int ML::paramsRPROJ::n_components

◆ n_features

int ML::paramsRPROJ::n_features

◆ n_samples

int ML::paramsRPROJ::n_samples

◆ random_state

int ML::paramsRPROJ::random_state

◆ sparse_data

template<typename math_t >
rmm::device_uvector<math_t> ML::rand_mat< math_t >::sparse_data

◆ stream

template<typename math_t >
cudaStream_t ML::rand_mat< math_t >::stream

◆ type

template<typename math_t >
random_matrix_type ML::rand_mat< math_t >::type