Loading [MathJax]/extensions/tex2jax.js
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Namespaces | Typedefs | Functions
kmeans.hpp File Reference
#include <cuvs/cluster/kmeans.hpp>
Include dependency graph for kmeans.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

 raft
 
 ML
 
 ML::kmeans
 

Typedefs

using ML::kmeans::KMeansParams = cuvs::cluster::kmeans::params
 

Functions

void ML::kmeans::fit_predict (const raft::handle_t &handle, const KMeansParams &params, const float *X, int n_samples, int n_features, const float *sample_weight, float *centroids, int *labels, float &inertia, int &n_iter)
 Compute k-means clustering and predicts cluster index for each sample in the input. More...
 
void ML::kmeans::fit_predict (const raft::handle_t &handle, const KMeansParams &params, const double *X, int n_samples, int n_features, const double *sample_weight, double *centroids, int *labels, double &inertia, int &n_iter)
 
void ML::kmeans::fit_predict (const raft::handle_t &handle, const KMeansParams &params, const float *X, int64_t n_samples, int64_t n_features, const float *sample_weight, float *centroids, int64_t *labels, float &inertia, int64_t &n_iter)
 
void ML::kmeans::fit_predict (const raft::handle_t &handle, const KMeansParams &params, const double *X, int64_t n_samples, int64_t n_features, const double *sample_weight, double *centroids, int64_t *labels, double &inertia, int64_t &n_iter)
 
void ML::kmeans::predict (const raft::handle_t &handle, const KMeansParams &params, const float *centroids, const float *X, int n_samples, int n_features, const float *sample_weight, bool normalize_weights, int *labels, float &inertia)
 Predict the closest cluster each sample in X belongs to. More...
 
void ML::kmeans::predict (const raft::handle_t &handle, const KMeansParams &params, const double *centroids, const double *X, int n_samples, int n_features, const double *sample_weight, bool normalize_weights, int *labels, double &inertia)
 
void ML::kmeans::predict (const raft::handle_t &handle, const KMeansParams &params, const float *centroids, const float *X, int64_t n_samples, int64_t n_features, const float *sample_weight, bool normalize_weights, int64_t *labels, float &inertia)
 
void ML::kmeans::predict (const raft::handle_t &handle, const KMeansParams &params, const double *centroids, const double *X, int64_t n_samples, int64_t n_features, const double *sample_weight, bool normalize_weights, int64_t *labels, double &inertia)
 
void ML::kmeans::transform (const raft::handle_t &handle, const KMeansParams &params, const float *centroids, const float *X, int n_samples, int n_features, float *X_new)
 Transform X to a cluster-distance space. More...
 
void ML::kmeans::transform (const raft::handle_t &handle, const KMeansParams &params, const double *centroids, const double *X, int n_samples, int n_features, double *X_new)
 
void ML::kmeans::transform (const raft::handle_t &handle, const KMeansParams &params, const float *centroids, const float *X, int64_t n_samples, int64_t n_features, float *X_new)
 
void ML::kmeans::transform (const raft::handle_t &handle, const KMeansParams &params, const double *centroids, const double *X, int64_t n_samples, int64_t n_features, double *X_new)