50 void fit(
const raft::handle_t& handle,
55 const float* sample_weight,
60 void fit(
const raft::handle_t& handle,
65 const double* sample_weight,
70 void fit(
const raft::handle_t& handle,
75 const float* sample_weight,
80 void fit(
const raft::handle_t& handle,
85 const double* sample_weight,
114 const float* centroids,
118 const float* sample_weight,
119 bool normalize_weights,
125 const double* centroids,
129 const double* sample_weight,
130 bool normalize_weights,
135 const float* centroids,
139 const float* sample_weight,
140 bool normalize_weights,
146 const double* centroids,
150 const double* sample_weight,
151 bool normalize_weights,
173 const float* centroids,
181 const double* centroids,
188 const float* centroids,
196 const double* centroids,
Definition: params.hpp:34
void transform(const raft::handle_t &handle, const KMeansParams ¶ms, const float *centroids, const float *X, int n_samples, int n_features, float *X_new)
Transform X to a cluster-distance space.
void fit(const raft::handle_t &handle, const KMeansParams ¶ms, const float *X, int n_samples, int n_features, const float *sample_weight, float *centroids, float &inertia, int &n_iter)
Compute k-means clustering for each sample in the input.
void predict(const raft::handle_t &handle, const KMeansParams ¶ms, const float *centroids, const float *X, int n_samples, int n_features, const float *sample_weight, bool normalize_weights, int *labels, float &inertia)
Predict the closest cluster each sample in X belongs to.
Definition: dbscan.hpp:29
Definition: dbscan.hpp:25
Definition: kmeans_params.hpp:33