Functions
ML::Datasets Namespace Reference

Functions

void make_blobs (const raft::handle_t &handle, float *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.f, uint64_t seed=0ULL)
 
void make_blobs (const raft::handle_t &handle, double *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL)
 
void make_blobs (const raft::handle_t &handle, float *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.0, uint64_t seed=0ULL)
 
void make_blobs (const raft::handle_t &handle, double *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL)
 
void make_regression (const raft::handle_t &handle, float *out, float *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, float *coef=nullptr, int64_t n_targets=1LL, float bias=0.0f, int64_t effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL)
 GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html. More...
 
void make_regression (const raft::handle_t &handle, double *out, double *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, double *coef=nullptr, int64_t n_targets=1LL, double bias=0.0, int64_t effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL)
 
void make_regression (const raft::handle_t &handle, float *out, float *values, int n_rows, int n_cols, int n_informative, float *coef=nullptr, int n_targets=1LL, float bias=0.0f, int effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL)
 
void make_regression (const raft::handle_t &handle, double *out, double *values, int n_rows, int n_cols, int n_informative, double *coef=nullptr, int n_targets=1LL, double bias=0.0, int effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL)
 
void make_arima (const raft::handle_t &handle, float *out, int batch_size, int n_obs, ARIMAOrder order, float scale=1.0f, float noise_scale=0.2f, float intercept_scale=1.0f, uint64_t seed=0ULL)
 
void make_arima (const raft::handle_t &handle, double *out, int batch_size, int n_obs, ARIMAOrder order, double scale=1.0, double noise_scale=0.2, double intercept_scale=1.0, uint64_t seed=0ULL)
 

Function Documentation

◆ make_arima() [1/2]

void ML::Datasets::make_arima ( const raft::handle_t &  handle,
double *  out,
int  batch_size,
int  n_obs,
ARIMAOrder  order,
double  scale = 1.0,
double  noise_scale = 0.2,
double  intercept_scale = 1.0,
uint64_t  seed = 0ULL 
)

◆ make_arima() [2/2]

void ML::Datasets::make_arima ( const raft::handle_t &  handle,
float *  out,
int  batch_size,
int  n_obs,
ARIMAOrder  order,
float  scale = 1.0f,
float  noise_scale = 0.2f,
float  intercept_scale = 1.0f,
uint64_t  seed = 0ULL 
)

Generates a dataset of time series by simulating an ARIMA process of a given order.

Parameters
[in]handlecuML handle
[out]outGenerated time series
[in]batch_sizeBatch size
[in]n_obsNumber of observations per series
[in]orderARIMA order
[in]scaleScale used to draw the starting values
[in]noise_scaleScale used to draw the residuals
[in]intercept_scaleScale used to draw the intercept
[in]seedSeed for the random number generator

◆ make_regression() [1/4]

void ML::Datasets::make_regression ( const raft::handle_t &  handle,
double *  out,
double *  values,
int  n_rows,
int  n_cols,
int  n_informative,
double *  coef = nullptr,
int  n_targets = 1LL,
double  bias = 0.0,
int  effective_rank = -1LL,
double  tail_strength = 0.5,
double  noise = 0.0,
bool  shuffle = true,
uint64_t  seed = 0ULL 
)

◆ make_regression() [2/4]

void ML::Datasets::make_regression ( const raft::handle_t &  handle,
double *  out,
double *  values,
int64_t  n_rows,
int64_t  n_cols,
int64_t  n_informative,
double *  coef = nullptr,
int64_t  n_targets = 1LL,
double  bias = 0.0,
int64_t  effective_rank = -1LL,
double  tail_strength = 0.5,
double  noise = 0.0,
bool  shuffle = true,
uint64_t  seed = 0ULL 
)

◆ make_regression() [3/4]

void ML::Datasets::make_regression ( const raft::handle_t &  handle,
float *  out,
float *  values,
int  n_rows,
int  n_cols,
int  n_informative,
float *  coef = nullptr,
int  n_targets = 1LL,
float  bias = 0.0f,
int  effective_rank = -1LL,
float  tail_strength = 0.5f,
float  noise = 0.0f,
bool  shuffle = true,
uint64_t  seed = 0ULL 
)

◆ make_regression() [4/4]

void ML::Datasets::make_regression ( const raft::handle_t &  handle,
float *  out,
float *  values,
int64_t  n_rows,
int64_t  n_cols,
int64_t  n_informative,
float *  coef = nullptr,
int64_t  n_targets = 1LL,
float  bias = 0.0f,
int64_t  effective_rank = -1LL,
float  tail_strength = 0.5f,
float  noise = 0.0f,
bool  shuffle = true,
uint64_t  seed = 0ULL 
)

GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html.

Parameters
[in]handlecuML handle
[out]outRow-major (samples, features) matrix to store the problem data
[out]valuesRow-major (samples, targets) matrix to store the values for the regression problem
[in]n_rowsNumber of samples
[in]n_colsNumber of features
[in]n_informativeNumber of informative features (non-zero coefficients)
[out]coefRow-major (features, targets) matrix to store the coefficients used to generate the values for the regression problem. If nullptr is given, nothing will be written
[in]n_targetsNumber of targets (generated values per sample)
[in]biasA scalar that will be added to the values
[in]effective_rankThe approximate rank of the data matrix (used to create correlations in the data). -1 is the code to use well-conditioned data
[in]tail_strengthThe relative importance of the fat noisy tail of the singular values profile if effective_rank is not -1
[in]noiseStandard deviation of the gaussian noise applied to the output
[in]shuffleShuffle the samples and the features
[in]seedSeed for the random number generator