Functions | |
void | make_blobs (const raft::handle_t &handle, float *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.f, uint64_t seed=0ULL) |
void | make_blobs (const raft::handle_t &handle, double *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL) |
void | make_blobs (const raft::handle_t &handle, float *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.0, uint64_t seed=0ULL) |
void | make_blobs (const raft::handle_t &handle, double *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL) |
void | make_regression (const raft::handle_t &handle, float *out, float *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, float *coef=nullptr, int64_t n_targets=1LL, float bias=0.0f, int64_t effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL) |
GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html. More... | |
void | make_regression (const raft::handle_t &handle, double *out, double *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, double *coef=nullptr, int64_t n_targets=1LL, double bias=0.0, int64_t effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL) |
void | make_regression (const raft::handle_t &handle, float *out, float *values, int n_rows, int n_cols, int n_informative, float *coef=nullptr, int n_targets=1LL, float bias=0.0f, int effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL) |
void | make_regression (const raft::handle_t &handle, double *out, double *values, int n_rows, int n_cols, int n_informative, double *coef=nullptr, int n_targets=1LL, double bias=0.0, int effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL) |
void | make_arima (const raft::handle_t &handle, float *out, int batch_size, int n_obs, ARIMAOrder order, float scale=1.0f, float noise_scale=0.2f, float intercept_scale=1.0f, uint64_t seed=0ULL) |
void | make_arima (const raft::handle_t &handle, double *out, int batch_size, int n_obs, ARIMAOrder order, double scale=1.0, double noise_scale=0.2, double intercept_scale=1.0, uint64_t seed=0ULL) |
void ML::Datasets::make_arima | ( | const raft::handle_t & | handle, |
double * | out, | ||
int | batch_size, | ||
int | n_obs, | ||
ARIMAOrder | order, | ||
double | scale = 1.0 , |
||
double | noise_scale = 0.2 , |
||
double | intercept_scale = 1.0 , |
||
uint64_t | seed = 0ULL |
||
) |
void ML::Datasets::make_arima | ( | const raft::handle_t & | handle, |
float * | out, | ||
int | batch_size, | ||
int | n_obs, | ||
ARIMAOrder | order, | ||
float | scale = 1.0f , |
||
float | noise_scale = 0.2f , |
||
float | intercept_scale = 1.0f , |
||
uint64_t | seed = 0ULL |
||
) |
Generates a dataset of time series by simulating an ARIMA process of a given order.
[in] | handle | cuML handle |
[out] | out | Generated time series |
[in] | batch_size | Batch size |
[in] | n_obs | Number of observations per series |
[in] | order | ARIMA order |
[in] | scale | Scale used to draw the starting values |
[in] | noise_scale | Scale used to draw the residuals |
[in] | intercept_scale | Scale used to draw the intercept |
[in] | seed | Seed for the random number generator |
void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
double * | out, | ||
double * | values, | ||
int | n_rows, | ||
int | n_cols, | ||
int | n_informative, | ||
double * | coef = nullptr , |
||
int | n_targets = 1LL , |
||
double | bias = 0.0 , |
||
int | effective_rank = -1LL , |
||
double | tail_strength = 0.5 , |
||
double | noise = 0.0 , |
||
bool | shuffle = true , |
||
uint64_t | seed = 0ULL |
||
) |
void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
double * | out, | ||
double * | values, | ||
int64_t | n_rows, | ||
int64_t | n_cols, | ||
int64_t | n_informative, | ||
double * | coef = nullptr , |
||
int64_t | n_targets = 1LL , |
||
double | bias = 0.0 , |
||
int64_t | effective_rank = -1LL , |
||
double | tail_strength = 0.5 , |
||
double | noise = 0.0 , |
||
bool | shuffle = true , |
||
uint64_t | seed = 0ULL |
||
) |
void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
float * | out, | ||
float * | values, | ||
int | n_rows, | ||
int | n_cols, | ||
int | n_informative, | ||
float * | coef = nullptr , |
||
int | n_targets = 1LL , |
||
float | bias = 0.0f , |
||
int | effective_rank = -1LL , |
||
float | tail_strength = 0.5f , |
||
float | noise = 0.0f , |
||
bool | shuffle = true , |
||
uint64_t | seed = 0ULL |
||
) |
void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
float * | out, | ||
float * | values, | ||
int64_t | n_rows, | ||
int64_t | n_cols, | ||
int64_t | n_informative, | ||
float * | coef = nullptr , |
||
int64_t | n_targets = 1LL , |
||
float | bias = 0.0f , |
||
int64_t | effective_rank = -1LL , |
||
float | tail_strength = 0.5f , |
||
float | noise = 0.0f , |
||
bool | shuffle = true , |
||
uint64_t | seed = 0ULL |
||
) |
GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html.
[in] | handle | cuML handle |
[out] | out | Row-major (samples, features) matrix to store the problem data |
[out] | values | Row-major (samples, targets) matrix to store the values for the regression problem |
[in] | n_rows | Number of samples |
[in] | n_cols | Number of features |
[in] | n_informative | Number of informative features (non-zero coefficients) |
[out] | coef | Row-major (features, targets) matrix to store the coefficients used to generate the values for the regression problem. If nullptr is given, nothing will be written |
[in] | n_targets | Number of targets (generated values per sample) |
[in] | bias | A scalar that will be added to the values |
[in] | effective_rank | The approximate rank of the data matrix (used to create correlations in the data). -1 is the code to use well-conditioned data |
[in] | tail_strength | The relative importance of the fat noisy tail of the singular values profile if effective_rank is not -1 |
[in] | noise | Standard deviation of the gaussian noise applied to the output |
[in] | shuffle | Shuffle the samples and the features |
[in] | seed | Seed for the random number generator |