Public Member Functions | Public Attributes | List of all members
cuml::genetic::param Struct Reference

contains all the hyper-parameters for training More...

#include <common.h>

Collaboration diagram for cuml::genetic::param:
Collaboration graph

Public Member Functions

float p_reproduce () const
 
int max_programs () const
 
int criterion () const
 

Public Attributes

int population_size = 1000
 
int hall_of_fame = 100
 
int n_components = 10
 
int generations = 20
 
int tournament_size = 20
 
float stopping_criteria = 0.0f
 
float const_range [2] = {-1.0f, 1.0f}
 
int init_depth [2] = {2, 6}
 
init_method_t init_method = init_method_t::half_and_half
 
std::vector< node::typefunction_set
 
std::map< int, std::vector< node::type > > arity_set
 
transformer_t transformer = transformer_t::sigmoid
 
metric_t metric = metric_t::mae
 
float parsimony_coefficient = 0.001f
 
float p_crossover = 0.9f
 
float p_subtree_mutation = 0.01f
 
float p_hoist_mutation = 0.01f
 
float p_point_mutation = 0.01f
 
float p_point_replace = 0.05f
 
float max_samples = 1.0f
 
float terminalRatio = 0.0f
 
std::vector< std::string > feature_names
 
int num_features
 
uint64_t random_state = 0UL
 
int num_epochs = 0
 
bool low_memory = false
 

Detailed Description

contains all the hyper-parameters for training

Note
Unless otherwise mentioned, all the parameters below are applicable to all of classification, regression and transformation.

Member Function Documentation

◆ criterion()

int cuml::genetic::param::criterion ( ) const

criterion for scoring based on metric used

◆ max_programs()

int cuml::genetic::param::max_programs ( ) const

maximum possible number of programs

◆ p_reproduce()

float cuml::genetic::param::p_reproduce ( ) const

Computes the probability of 'reproduction'

Member Data Documentation

◆ arity_set

std::map<int, std::vector<node::type> > cuml::genetic::param::arity_set

◆ const_range

float cuml::genetic::param::const_range[2] = {-1.0f, 1.0f}

minimum/maximum value for constant nodes

◆ feature_names

std::vector<std::string> cuml::genetic::param::feature_names

list of feature names for generating syntax trees from the programs

◆ function_set

std::vector<node::type> cuml::genetic::param::function_set
Initial value:

list of functions to choose from

◆ generations

int cuml::genetic::param::generations = 20

number of generations to evolve

◆ hall_of_fame

int cuml::genetic::param::hall_of_fame = 100

number of fittest programs to compare during correlation (transformation-only)

◆ init_depth

int cuml::genetic::param::init_depth[2] = {2, 6}

minimum/maximum depth of programs after initialization

◆ init_method

init_method_t cuml::genetic::param::init_method = init_method_t::half_and_half

initialization method

◆ low_memory

bool cuml::genetic::param::low_memory = false

Low memory flag for program history

◆ max_samples

float cuml::genetic::param::max_samples = 1.0f

subsampling factor

◆ metric

metric_t cuml::genetic::param::metric = metric_t::mae

fitness metric

◆ n_components

int cuml::genetic::param::n_components = 10

number of fittest programs to return from hall_of_fame top programs (transformation-only)

◆ num_epochs

int cuml::genetic::param::num_epochs = 0

Number of epochs for which the algorithm ran

◆ num_features

int cuml::genetic::param::num_features

number of features in current dataset

◆ p_crossover

float cuml::genetic::param::p_crossover = 0.9f

crossover mutation probability of the tournament winner

◆ p_hoist_mutation

float cuml::genetic::param::p_hoist_mutation = 0.01f

hoist mutation probability of the tournament winner

◆ p_point_mutation

float cuml::genetic::param::p_point_mutation = 0.01f

point mutation probabiilty of the tournament winner

◆ p_point_replace

float cuml::genetic::param::p_point_replace = 0.05f

point replace probabiility for point mutations

◆ p_subtree_mutation

float cuml::genetic::param::p_subtree_mutation = 0.01f

subtree mutation probability of the tournament winner

◆ parsimony_coefficient

float cuml::genetic::param::parsimony_coefficient = 0.001f

penalization factor for large programs

◆ population_size

int cuml::genetic::param::population_size = 1000

number of programs in each generation

◆ random_state

uint64_t cuml::genetic::param::random_state = 0UL
Todo:

: feature_names

: verbose

random seed used for RNG

◆ stopping_criteria

float cuml::genetic::param::stopping_criteria = 0.0f

metric threshold used for early stopping

◆ terminalRatio

float cuml::genetic::param::terminalRatio = 0.0f

Terminal ratio for node selection during grow initialization. 0 -> auto-selection

◆ tournament_size

int cuml::genetic::param::tournament_size = 20

number of programs that compete in the tournament to become part of next generation

◆ transformer

transformer_t cuml::genetic::param::transformer = transformer_t::sigmoid

transformation function to class probabilities (classification-only)


The documentation for this struct was generated from the following file: