contains all the hyper-parameters for training More...
#include <common.h>
Public Member Functions | |
float | p_reproduce () const |
int | max_programs () const |
int | criterion () const |
Public Attributes | |
int | population_size = 1000 |
int | hall_of_fame = 100 |
int | n_components = 10 |
int | generations = 20 |
int | tournament_size = 20 |
float | stopping_criteria = 0.0f |
float | const_range [2] = {-1.0f, 1.0f} |
int | init_depth [2] = {2, 6} |
init_method_t | init_method = init_method_t::half_and_half |
std::vector< node::type > | function_set |
std::map< int, std::vector< node::type > > | arity_set |
transformer_t | transformer = transformer_t::sigmoid |
metric_t | metric = metric_t::mae |
float | parsimony_coefficient = 0.001f |
float | p_crossover = 0.9f |
float | p_subtree_mutation = 0.01f |
float | p_hoist_mutation = 0.01f |
float | p_point_mutation = 0.01f |
float | p_point_replace = 0.05f |
float | max_samples = 1.0f |
float | terminalRatio = 0.0f |
std::vector< std::string > | feature_names |
int | num_features |
uint64_t | random_state = 0UL |
int | num_epochs = 0 |
bool | low_memory = false |
contains all the hyper-parameters for training
int cuml::genetic::param::criterion | ( | ) | const |
criterion for scoring based on metric used
int cuml::genetic::param::max_programs | ( | ) | const |
maximum possible number of programs
float cuml::genetic::param::p_reproduce | ( | ) | const |
Computes the probability of 'reproduction'
std::map<int, std::vector<node::type> > cuml::genetic::param::arity_set |
map of functions ordered by their arity
float cuml::genetic::param::const_range[2] = {-1.0f, 1.0f} |
minimum/maximum value for constant
nodes
std::vector<std::string> cuml::genetic::param::feature_names |
list of feature names for generating syntax trees from the programs
std::vector<node::type> cuml::genetic::param::function_set |
list of functions to choose from
int cuml::genetic::param::generations = 20 |
number of generations to evolve
int cuml::genetic::param::hall_of_fame = 100 |
number of fittest programs to compare during correlation (transformation-only)
int cuml::genetic::param::init_depth[2] = {2, 6} |
minimum/maximum depth of programs after initialization
init_method_t cuml::genetic::param::init_method = init_method_t::half_and_half |
initialization method
bool cuml::genetic::param::low_memory = false |
Low memory flag for program history
float cuml::genetic::param::max_samples = 1.0f |
subsampling factor
metric_t cuml::genetic::param::metric = metric_t::mae |
fitness metric
int cuml::genetic::param::n_components = 10 |
number of fittest programs to return from hall_of_fame
top programs (transformation-only)
int cuml::genetic::param::num_epochs = 0 |
Number of epochs for which the algorithm ran
int cuml::genetic::param::num_features |
number of features in current dataset
float cuml::genetic::param::p_crossover = 0.9f |
crossover mutation probability of the tournament winner
float cuml::genetic::param::p_hoist_mutation = 0.01f |
hoist mutation probability of the tournament winner
float cuml::genetic::param::p_point_mutation = 0.01f |
point mutation probabiilty of the tournament winner
float cuml::genetic::param::p_point_replace = 0.05f |
point replace probabiility for point mutations
float cuml::genetic::param::p_subtree_mutation = 0.01f |
subtree mutation probability of the tournament winner
float cuml::genetic::param::parsimony_coefficient = 0.001f |
penalization factor for large programs
int cuml::genetic::param::population_size = 1000 |
number of programs in each generation
uint64_t cuml::genetic::param::random_state = 0UL |
: feature_names
: verbose
random seed used for RNG
float cuml::genetic::param::stopping_criteria = 0.0f |
metric threshold used for early stopping
float cuml::genetic::param::terminalRatio = 0.0f |
Terminal ratio for node selection during grow initialization. 0 -> auto-selection
int cuml::genetic::param::tournament_size = 20 |
number of programs that compete in the tournament to become part of next generation
transformer_t cuml::genetic::param::transformer = transformer_t::sigmoid |
transformation function to class probabilities (classification-only)