Public Attributes | List of all members
ML::DT::DecisionTreeParams Struct Reference

#include <decisiontree.hpp>

Collaboration diagram for ML::DT::DecisionTreeParams:
Collaboration graph

Public Attributes

int max_depth
 
int max_leaves
 
float max_features
 
int max_n_bins
 
int min_samples_leaf
 
int min_samples_split
 
CRITERION split_criterion
 
float min_impurity_decrease = 0.0f
 
int max_batch_size
 

Member Data Documentation

◆ max_batch_size

int ML::DT::DecisionTreeParams::max_batch_size

Maximum number of nodes that can be processed in a given batch. This is used only for batched-level algo

◆ max_depth

int ML::DT::DecisionTreeParams::max_depth

Maximum tree depth. Unlimited (e.g., until leaves are pure), If -1.

◆ max_features

float ML::DT::DecisionTreeParams::max_features

Ratio of number of features (columns) to consider per node split.

◆ max_leaves

int ML::DT::DecisionTreeParams::max_leaves

Maximum leaf nodes per tree. Soft constraint. Unlimited, If -1.

◆ max_n_bins

int ML::DT::DecisionTreeParams::max_n_bins

maximum number of bins used by the split algorithm per feature.

◆ min_impurity_decrease

float ML::DT::DecisionTreeParams::min_impurity_decrease = 0.0f

Minimum impurity decrease required for splitting a node. If the impurity decrease is below this value, node is leafed out. Default is 0.0

◆ min_samples_leaf

int ML::DT::DecisionTreeParams::min_samples_leaf

The minimum number of samples (rows) in each leaf node.

◆ min_samples_split

int ML::DT::DecisionTreeParams::min_samples_split

The minimum number of samples (rows) needed to split an internal node.

◆ split_criterion

CRITERION ML::DT::DecisionTreeParams::split_criterion

Node split criterion. GINI and Entropy for classification, MSE for regression.


The documentation for this struct was generated from the following file: