Public Attributes | List of all members
qn_params Struct Reference

#include <qn.h>

Collaboration diagram for qn_params:
Collaboration graph

Public Attributes

qn_loss_type loss
 
double penalty_l1
 
double penalty_l2
 
double grad_tol
 
double change_tol
 
int max_iter
 
int linesearch_max_iter
 
int lbfgs_memory
 
int verbose
 
bool fit_intercept
 
bool penalty_normalized
 

Member Data Documentation

◆ change_tol

double qn_params::change_tol

Convergence criteria: the threshold on the function change.

◆ fit_intercept

bool qn_params::fit_intercept

Whether to fit the bias term.

◆ grad_tol

double qn_params::grad_tol

Convergence criteria: the threshold on the gradient.

◆ lbfgs_memory

int qn_params::lbfgs_memory

Number of vectors approximating the hessian (l-bfgs).

◆ linesearch_max_iter

int qn_params::linesearch_max_iter

Maximum number of linesearch (inner loop) iterations.

◆ loss

qn_loss_type qn_params::loss

Loss type.

◆ max_iter

int qn_params::max_iter

Maximum number of iterations.

◆ penalty_l1

double qn_params::penalty_l1

Regularization: L1 component.

◆ penalty_l2

double qn_params::penalty_l2

Regularization: L2 component.

◆ penalty_normalized

bool qn_params::penalty_normalized

Whether to divide the L1 and L2 regularization parameters by the sample size.

Note, the defined QN loss functions normally are scaled for the sample size, e.g. the average across the data rows is calculated. Enabling penalty_normalized makes this solver's behavior compatible to those solvers, which do not scale the loss functions (like sklearn.LogisticRegression()).

◆ verbose

int qn_params::verbose

Triggers extra output when greater than zero.


The documentation for this struct was generated from the following file: